不論漏極-源極電壓VDS之間加多大或什么極性的電壓,總有一個(gè)pn結(jié)處于反偏狀態(tài),漏、源極間沒(méi)有導(dǎo)電溝道,器件無(wú)法導(dǎo)通。但如果VGS正向足夠大,此時(shí)柵極G和襯底p之間的絕緣層中會(huì)產(chǎn)生一個(gè)電場(chǎng),方向從柵極指向襯底,電子在該電場(chǎng)的作用下聚集在柵氧下表面,形成一個(gè)N型薄層(一般為幾個(gè)nm),連通左右兩個(gè)N+區(qū),形成導(dǎo)通溝道,如圖中黃域所示。當(dāng)VDS>0V時(shí),N-MOSFET管導(dǎo)通,器件工作。了解完以PNP為例的BJT結(jié)構(gòu)和以N-MOSFET為例的MOSFET結(jié)構(gòu)之后,我們?cè)賮?lái)看IGBT的結(jié)構(gòu)圖↓IGBT內(nèi)部結(jié)構(gòu)及符號(hào)黃塊表示IGBT導(dǎo)通時(shí)形成的溝道。首先看黃色虛線部分,細(xì)看之下是不是有一絲熟悉之感?這部分結(jié)構(gòu)和工作原理實(shí)質(zhì)上和上述的N-MOSFET是一樣的。當(dāng)VGE>0V,VCE>0V時(shí),IGBT表面同樣會(huì)形成溝道,電子從n區(qū)出發(fā)、流經(jīng)溝道區(qū)、注入n漂移區(qū),n漂移區(qū)就類似于N-MOSFET的漏極。藍(lán)色虛線部分同理于BJT結(jié)構(gòu),流入n漂移區(qū)的電子為PNP晶體管的n區(qū)持續(xù)提供電子,這就保證了PNP晶體管的基極電流。我們給它外加正向偏壓VCE,使PNP正向?qū)?,IGBT器件正常工作。這就是定義中為什么說(shuō)IGBT是由BJT和MOSFET組成的器件的原因。此外,圖中我還標(biāo)了一個(gè)紅色部分。開關(guān)頻率比較大的IGBT型號(hào)是S4,可以使用到30KHz的開關(guān)頻率。江西質(zhì)量英飛凌IGBT誠(chéng)信合作
具有門極輸入阻抗高、驅(qū)動(dòng)功率小、電流關(guān)斷能力強(qiáng)、開關(guān)速度快、開關(guān)損耗小等優(yōu)點(diǎn)。隨著下游應(yīng)用發(fā)展越來(lái)越快,MOSFET的電流能力顯然已經(jīng)不能滿足市場(chǎng)需求。為了在保留MOSFET優(yōu)點(diǎn)的前提下降低器件的導(dǎo)通電阻,人們?cè)?jīng)嘗試通過(guò)提高M(jìn)OSFET襯底的摻雜濃度以降低導(dǎo)通電阻,但襯底摻雜的提高會(huì)降低器件的耐壓。這顯然不是理想的改進(jìn)辦法。但是如果在MOSFET結(jié)構(gòu)的基礎(chǔ)上引入一個(gè)雙極型BJT結(jié)構(gòu),就不僅能夠保留MOSFET原有優(yōu)點(diǎn),還可以通過(guò)BJT結(jié)構(gòu)的少數(shù)載流子注入效應(yīng)對(duì)n漂移區(qū)的電導(dǎo)率進(jìn)行調(diào)制,從而有效降低n漂移區(qū)的電阻率,提高器件的電流能力。經(jīng)過(guò)后續(xù)不斷的改進(jìn),目前IGBT已經(jīng)能夠覆蓋從600V—6500V的電壓范圍,應(yīng)用涵蓋從工業(yè)電源、變頻器、新能源汽車、新能源發(fā)電到軌道交通、國(guó)家電網(wǎng)等一系列領(lǐng)域。IGBT憑借其高輸入阻抗、驅(qū)動(dòng)電路簡(jiǎn)單、開關(guān)損耗小等優(yōu)點(diǎn)在龐大的功率器件世界中贏得了自己的一片領(lǐng)域??傮w來(lái)說(shuō),BJT、MOSFET、IGBT三者的關(guān)系就像下面這匹馬當(dāng)然更準(zhǔn)確來(lái)說(shuō),這三者雖然在之前的基礎(chǔ)上進(jìn)行了改進(jìn),但并非是完全替代的關(guān)系,三者在功率器件市場(chǎng)都各有所長(zhǎng),應(yīng)用領(lǐng)域也不完全重合。因此,在時(shí)間上可以將其看做祖孫三代的關(guān)系。天津有什么英飛凌IGBT單價(jià)通常IGBT模塊的工作電壓(600V、1200V、1700V)均對(duì)應(yīng)于常用電網(wǎng)的電壓等級(jí)。
一個(gè)空穴電流(雙極)。當(dāng)UCE大于開啟電壓UCE(th),MOSFET內(nèi)形成溝道,為晶體管提供基極電流,IGBT導(dǎo)通。2)導(dǎo)通壓降電導(dǎo)調(diào)制效應(yīng)使電阻RN減小,通態(tài)壓降小。所謂通態(tài)壓降,是指IGBT進(jìn)入導(dǎo)通狀態(tài)的管壓降UDS,這個(gè)電壓隨UCS上升而下降。3)關(guān)斷當(dāng)在柵極施加一個(gè)負(fù)偏壓或柵壓低于門限值時(shí),溝道被禁止,沒(méi)有空穴注入N-區(qū)內(nèi)。在任何情況下,如果MOSFET的電流在開關(guān)階段迅速下降,集電極電流則逐漸降低,這是閡為換向開始后,在N層內(nèi)還存在少數(shù)的載流子(少于)。這種殘余電流值(尾流)的降低,完全取決于關(guān)斷時(shí)電荷的密度,而密度又與幾種因素有關(guān),如摻雜質(zhì)的數(shù)量和拓?fù)洌瑢哟魏穸群蜏囟?。少子的衰減使集電極電流具有特征尾流波形。集電極電流將引起功耗升高、交叉導(dǎo)通問(wèn)題,特別是在使用續(xù)流二極管的設(shè)備上,問(wèn)題更加明顯。鑒于尾流與少子的重組有關(guān),尾流的電流值應(yīng)與芯片的Tc、IC:和uCE密切相關(guān),并且與空穴移動(dòng)性有密切的關(guān)系。因此,根據(jù)所達(dá)到的溫度,降低這種作用在終端設(shè)備設(shè)計(jì)上的電流的不理想效應(yīng)是可行的。當(dāng)柵極和發(fā)射極間施加反壓或不加信號(hào)時(shí),MOSFET內(nèi)的溝道消失,晶體管的基極電流被切斷,IGBT關(guān)斷。4)反向阻斷當(dāng)集電極被施加一個(gè)反向電壓時(shí),J。
IGBT功率模塊如何選擇?在說(shuō)IGBT模塊該如何選擇之前,小編先帶著大家了解下什么是IGBT?IGBT全稱為絕緣柵雙極型晶體管(InsulatedGateBipolarTransistor),所以它是一個(gè)有MOSGate的BJT晶體管,可以簡(jiǎn)單理解為IGBT是MOSFET和BJT的組合體。MOSFET主要是單一載流子(多子)導(dǎo)電,而BJT是兩種載流子導(dǎo)電,所以BJT的驅(qū)動(dòng)電流會(huì)比MOSFET大,但是MOSFET的控制級(jí)柵極是靠場(chǎng)效應(yīng)反型來(lái)控制的,沒(méi)有額外的控制端功率損耗。所以IGBT就是利用了MOSFET和BJT的優(yōu)點(diǎn)組合起來(lái)的,兼有MOSFET的柵極電壓控制晶體管(高輸入阻抗),又利用了BJT的雙載流子達(dá)到大電流(低導(dǎo)通壓降)的目的(Voltage-ControlledBipolarDevice)。從而達(dá)到驅(qū)動(dòng)功率小、飽和壓降低的完美要求,廣泛應(yīng)用于600V以上的變流系統(tǒng)如交流電機(jī)、變頻器、開關(guān)電源、照明電路、牽引傳動(dòng)等領(lǐng)域。1.在選擇IGBT前需要確定主電路拓?fù)浣Y(jié)構(gòu),這個(gè)和IGBT選型密切相關(guān)。2.選擇IGBT需要考慮的參數(shù)如下:額定工作電流、過(guò)載系數(shù)、散熱條件決定了IGBT模塊的額定電流參數(shù),額定工作電壓、電壓波動(dòng)、最大工作電壓決定了IGBT模塊的額定電壓參數(shù),引線方式、結(jié)構(gòu)也會(huì)給IGBT選型提出要求。,目前市面上的叫主流的IGBT產(chǎn)品都是進(jìn)口的。英飛凌IGBT模塊選型主要是根據(jù)工作電壓,工作電流,封裝形式和開關(guān)頻率來(lái)進(jìn)行選擇。
分兩種情況:②若柵-射極電壓UGE<Uth,溝道不能形成,IGBT呈正向阻斷狀態(tài)。②若柵-射極電壓UGE>Uth,柵極溝道形成,IGBT呈導(dǎo)通狀態(tài)(正常工作)。此時(shí),空穴從P+區(qū)注入到N基區(qū)進(jìn)行電導(dǎo)調(diào)制,減少N基區(qū)電阻RN的值,使IGBT通態(tài)壓降降低。IGBT各世代的技術(shù)差異回顧功率器件過(guò)去幾十年的發(fā)展,1950-60年代雙極型器件SCR,GTR,GTO,該時(shí)段的產(chǎn)品通態(tài)電阻很?。浑娏骺刂?,控制電路復(fù)雜且功耗大;1970年代單極型器件VD-MOSFET。但隨著終端應(yīng)用的需求,需要一種新功率器件能同時(shí)滿足:驅(qū)動(dòng)電路簡(jiǎn)單,以降低成本與開關(guān)功耗、通態(tài)壓降較低,以減小器件自身的功耗。1980年代初,試圖把MOS與BJT技術(shù)集成起來(lái)的研究,導(dǎo)致了IGBT的發(fā)明。1985年前后美國(guó)GE成功試制工業(yè)樣品(可惜后來(lái)放棄)。自此以后,IGBT主要經(jīng)歷了6代技術(shù)及工藝改進(jìn)。從結(jié)構(gòu)上講,IGBT主要有三個(gè)發(fā)展方向:1)IGBT縱向結(jié)構(gòu):非透明集電區(qū)NPT型、帶緩沖層的PT型、透明集電區(qū)NPT型和FS電場(chǎng)截止型;2)IGBT柵極結(jié)構(gòu):平面柵機(jī)構(gòu)、Trench溝槽型結(jié)構(gòu);3)硅片加工工藝:外延生長(zhǎng)技術(shù)、區(qū)熔硅單晶;其發(fā)展趨勢(shì)是:①降低損耗②降低生產(chǎn)成本總功耗=通態(tài)損耗(與飽和電壓VCEsat有關(guān))+開關(guān)損耗(EoffEon)。第四代IGBT能耐175度的極限高溫。遼寧品質(zhì)英飛凌IGBT值得推薦
大家選擇的時(shí)候,盡量選擇新一代的IGBT,芯片技術(shù)有所改進(jìn),IGBT的內(nèi)核溫度將有很大的提升。江西質(zhì)量英飛凌IGBT誠(chéng)信合作
本發(fā)明實(shí)施例還提供了一種半導(dǎo)體功率模塊,如圖15所示,半導(dǎo)體功率模塊50配置有上述igbt芯片51,還包括驅(qū)動(dòng)集成塊52和檢測(cè)電阻40。具體地,如圖16所示,igbt芯片51設(shè)置在dcb板60上,驅(qū)動(dòng)集成塊52的out端口通過(guò)模塊引線端子521與igbt芯片51中公共柵極單元100連接,以便于驅(qū)動(dòng)工作區(qū)域10和電流檢測(cè)區(qū)域20工作;si端口通過(guò)模塊引線端子521與檢測(cè)電阻40連接,用于獲取檢測(cè)電阻40上的電壓;以及,gnd端口通過(guò)模塊引線端子521與電流檢測(cè)區(qū)域的第1發(fā)射極單元101引出的導(dǎo)線522連接,檢測(cè)電阻40的另一端還分別與電流檢測(cè)區(qū)域的第二發(fā)射極單元201和接地區(qū)域連接,從而通過(guò)si端口獲取檢測(cè)電阻40上的測(cè)量電壓,并根據(jù)該測(cè)量電壓檢測(cè)工作區(qū)域的工作電流。本發(fā)明實(shí)施例提供的半導(dǎo)體功率模塊,設(shè)置有igbt芯片,其中,igbt芯片上設(shè)置有:工作區(qū)域、電流檢測(cè)區(qū)域和接地區(qū)域;其中,igbt芯片還包括第1表面和第二表面,且,第1表面和第二表面相對(duì)設(shè)置;第1表面上設(shè)置有工作區(qū)域和電流檢測(cè)區(qū)域的公共柵極單元,以及,工作區(qū)域的第1發(fā)射極單元、電流檢測(cè)區(qū)域的第二發(fā)射極單元和第三發(fā)射極單元,其中,第三發(fā)射極單元與第1發(fā)射極單元連接。江西質(zhì)量英飛凌IGBT誠(chéng)信合作