多光子顯微鏡對(duì)成像深度的改善利用紅光或紅外光激發(fā),光散射小(小粒子的散射與波長(zhǎng)的四次方的成反比)。不需要***,能更多收集來(lái)自成像截面的散射光子。***不能區(qū)分由離焦區(qū)域或焦點(diǎn)區(qū)發(fā)射出的散射光子,多光子在深層成像信噪比好。單光子激發(fā)所用的紫外或可見(jiàn)光在光束到達(dá)焦平面之前易被樣品吸收而衰減,不易對(duì)深層激發(fā)。多光子熒光成像的特點(diǎn)。深度成像∶與共聚焦相比能更好地對(duì)厚散射物質(zhì)成像。信噪比∶多光子吸收采用的波長(zhǎng)是單光子吸收的2倍以上,所以顯微試樣中的瑞利散射更小,熒光測(cè)定的信噪比更高。觀察活細(xì)胞∶離子測(cè)量(i.e.Ca2+),GFP,發(fā)育生物學(xué)等—減少了光毒性和光漂白,能對(duì)細(xì)胞長(zhǎng)時(shí)間觀察。證實(shí)了多光子顯...
基于多光子顯微鏡的神經(jīng)成像技術(shù)原理:多光子顯微鏡可用于深度成像和三維成像,因此可用于拍攝不透明的厚樣品。目前主要使用的多光子顯微鏡包括雙光子顯微鏡和三光子顯微鏡。雙光子顯微鏡的結(jié)構(gòu)與共焦類似,區(qū)別在于:1)雙光子顯微鏡的激發(fā)光波長(zhǎng)比共焦長(zhǎng),能量較低,但穿透能力較強(qiáng);2)雙光子顯微鏡沒(méi)有小孔,提高了檢測(cè)效率;3)雙光子顯微鏡成像深度較快提高。那么,為什么雙光子能具有共焦顯微鏡所沒(méi)有的優(yōu)勢(shì)呢?原因是它采用雙光子激發(fā)方式。使用波長(zhǎng)較長(zhǎng)的激發(fā)光子,光子的能量較低,因此電子需要吸收兩個(gè)這樣的激發(fā)光子才能達(dá)到激發(fā)態(tài),從而釋放出一個(gè)熒光光子。因此,熒光信號(hào)的強(qiáng)度與光強(qiáng)的平方成正比。因?yàn)榻裹c(diǎn)處的光...
對(duì)于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個(gè)比較大的深度限制因素,而對(duì)于三光子成像這兩個(gè)問(wèn)題大大減小,但是三光子成像由于熒光團(tuán)的吸收截面比2P要小得多,所以需要更高數(shù)量級(jí)的脈沖能量才能獲得與2P激發(fā)的相同強(qiáng)度的熒光信號(hào)。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時(shí)采樣神經(jīng)元活動(dòng);需要更高的脈沖能量,以便在每個(gè)像素停留時(shí)間內(nèi)收集足夠的信號(hào)。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠(yuǎn)程的連接。要想將神經(jīng)元活動(dòng)與行為聯(lián)系起來(lái),需要同時(shí)監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動(dòng),大腦中的神經(jīng)網(wǎng)絡(luò)會(huì)在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元...
通過(guò)添加FACED模塊,可以將基于標(biāo)準(zhǔn)振鏡的現(xiàn)有2PM輕松轉(zhuǎn)換為千赫茲成像系統(tǒng)。FACED雙光子熒光顯微鏡遵循光柵掃描,需要很少的計(jì)算處理,在稀疏或密集的標(biāo)記樣本中均可以使用,并且不受串?dāng)_的影響,而且對(duì)整個(gè)圖像平面采樣后可以進(jìn)行運(yùn)動(dòng)校正。實(shí)驗(yàn)中沒(méi)有觀察到光損傷的跡象,此外,子脈沖延遲到達(dá)相同的樣品位置,能為熒光團(tuán)提供充足的時(shí)間使其從易于破壞的暗態(tài)返回到基態(tài),可以明顯減少光漂白。使用現(xiàn)有的傳感器,F(xiàn)ACED雙光子熒光顯微鏡可以提供足夠的速度和靈敏度來(lái)檢測(cè)神經(jīng)元過(guò)程中的鈣瞬變和谷氨酸瞬變,以及來(lái)自細(xì)胞體的尖峰和亞閾值電壓。該組使用基于FACED的2PM顯微鏡,在小鼠大腦中實(shí)現(xiàn)了千赫茲速率的神經(jīng)活動(dòng)...
現(xiàn)代分子生物學(xué)技術(shù)的迅速發(fā)展和科技的進(jìn)步,特別是隨著后基因組時(shí)代的到來(lái),人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,為在體研究基因表達(dá)規(guī)律、分子間的相互作用、細(xì)胞的增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡以及新的血管生成等提供了良好的生物學(xué)條件。然而,盡管人們利用現(xiàn)有的分子生物學(xué)方法,已經(jīng)對(duì)基因表達(dá)和蛋白質(zhì)之間的相互作用進(jìn)行了深入、細(xì)致的研究,但仍然不能實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活動(dòng)的實(shí)時(shí)、動(dòng)態(tài)監(jiān)測(cè)。在細(xì)胞的生理過(guò)程中,基因、尤其是蛋白質(zhì)的表達(dá)、修飾和相萬(wàn)作用往往發(fā)生可逆的、動(dòng)態(tài)的變化。目前的分子生物學(xué)方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對(duì)與研究基因的表達(dá)和蛋白質(zhì)之間的相互作用又至關(guān)重要。因...
某種物質(zhì)能產(chǎn)生熒光,首要條件是分子必須具有吸收的結(jié)構(gòu),即生色團(tuán)(分子中具有吸收特征頻率的光能的基團(tuán))。其次,該物質(zhì)必須具有一定的量子產(chǎn)率和適宣的環(huán)境。我們把分子中發(fā)射熒光的基團(tuán)稱為熒光團(tuán)。熒光團(tuán)一定是生色團(tuán),但生色團(tuán)不一定是熒光團(tuán)。因?yàn)?,如果生色團(tuán)的量子產(chǎn)率等于零,就不能發(fā)射出熒光,處于激發(fā)態(tài)的分子,可以由許多方式(如熱,碰撞)把能量釋放出來(lái),發(fā)射熒光只是其中的一種方式。此外,一種物質(zhì)吸收光的能力及量子產(chǎn)率又與物質(zhì)所處的環(huán)境密切相關(guān)。多光子成像是一種非線性的過(guò)程,信號(hào)產(chǎn)生要求功率密度達(dá)到MW/cm2的量級(jí)。進(jìn)口多光子顯微鏡成像區(qū)域 1,光源、光路高度整合通過(guò)精密的設(shè)計(jì),將飛秒激光器、...
快速光柵掃描有多種實(shí)現(xiàn)方式,使用振鏡進(jìn)行快速2D掃描,將振鏡和可調(diào)電動(dòng)透鏡結(jié)合在一起進(jìn)行快速3D掃描,但可調(diào)電動(dòng)透鏡由于機(jī)械慣性的限制在軸向無(wú)法快速進(jìn)行焦點(diǎn)切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實(shí)現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進(jìn)行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過(guò)調(diào)控M的位置實(shí)現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過(guò)調(diào)整顯微鏡的物鏡設(shè)計(jì)來(lái)擴(kuò)大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無(wú)法快速移動(dòng)以進(jìn)行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠(yuǎn)...
現(xiàn)代分子生物學(xué)技術(shù)的迅速發(fā)展和科技的進(jìn)步,特別是隨著后基因組時(shí)代的到來(lái),人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,為在體研究基因表達(dá)規(guī)律、分子間的相互作用、細(xì)胞的增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡以及新的血管生成等提供了良好的生物學(xué)條件。然而,盡管人們利用現(xiàn)有的分子生物學(xué)方法,已經(jīng)對(duì)基因表達(dá)和蛋白質(zhì)之間的相互作用進(jìn)行了深入、細(xì)致的研究,但仍然不能實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活動(dòng)的實(shí)時(shí)、動(dòng)態(tài)監(jiān)測(cè)。在細(xì)胞的生理過(guò)程中,基因、尤其是蛋白質(zhì)的表達(dá)、修飾和相萬(wàn)作用往往發(fā)生可逆的、動(dòng)態(tài)的變化。目前的分子生物學(xué)方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對(duì)與研究基因的表達(dá)和蛋白質(zhì)之間的相互作用又至關(guān)重要。因...
多光子顯微鏡的前景巨大 作為一個(gè)多學(xué)科交叉、知識(shí)密集、資金密集的高技術(shù)產(chǎn)業(yè),多光子顯微鏡涉及醫(yī)學(xué)、生物學(xué)、化學(xué)、物理學(xué)、電子學(xué)、工程學(xué)等學(xué)科,生產(chǎn)工藝相對(duì)復(fù)雜,進(jìn)入門(mén)檻較高,是衡量一個(gè)國(guó)家制造業(yè)和高科技發(fā)展水平的重要標(biāo)準(zhǔn)之一。過(guò)去的5年,多光子顯微鏡市場(chǎng)集中,由于投產(chǎn)生產(chǎn)的成本較高,技術(shù)難度大,目前涌現(xiàn)的新企業(yè)不多。顯微鏡作為一個(gè)傳統(tǒng)的高科技行業(yè),其作用至今沒(méi)有被其他技術(shù)顛覆,只是不斷融合并發(fā)展相關(guān)技術(shù),在醫(yī)療和其他精密檢測(cè)領(lǐng)域發(fā)揮著更大的作用。顯微鏡的商業(yè)化發(fā)展已進(jìn)入成熟期,主要需求來(lái)自教學(xué)、生命科學(xué)的研究及精密檢測(cè)等,全球市場(chǎng)呈現(xiàn)平緩的增長(zhǎng)態(tài)勢(shì)。然而,**、、顯微鏡產(chǎn)品(如多光子...
快速光柵掃描有多種實(shí)現(xiàn)方式,使用振鏡進(jìn)行快速2D掃描,將振鏡和可調(diào)電動(dòng)透鏡結(jié)合在一起進(jìn)行快速3D掃描,但可調(diào)電動(dòng)透鏡由于機(jī)械慣性的限制在軸向無(wú)法快速進(jìn)行焦點(diǎn)切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實(shí)現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進(jìn)行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過(guò)調(diào)控M的位置實(shí)現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過(guò)調(diào)整顯微鏡的物鏡設(shè)計(jì)來(lái)擴(kuò)大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無(wú)法快速移動(dòng)以進(jìn)行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠(yuǎn)...
多光子顯微鏡的前景巨大 作為一個(gè)多學(xué)科交叉、知識(shí)密集、資金密集的高技術(shù)產(chǎn)業(yè),多光子顯微鏡涉及醫(yī)學(xué)、生物學(xué)、化學(xué)、物理學(xué)、電子學(xué)、工程學(xué)等學(xué)科,生產(chǎn)工藝相對(duì)復(fù)雜,進(jìn)入門(mén)檻較高,是衡量一個(gè)國(guó)家制造業(yè)和高科技發(fā)展水平的重要標(biāo)準(zhǔn)之一。過(guò)去的5年,多光子顯微鏡市場(chǎng)集中,由于投產(chǎn)生產(chǎn)的成本較高,技術(shù)難度大,目前涌現(xiàn)的新企業(yè)不多。顯微鏡作為一個(gè)傳統(tǒng)的高科技行業(yè),其作用至今沒(méi)有被其他技術(shù)顛覆,只是不斷融合并發(fā)展相關(guān)技術(shù),在醫(yī)療和其他精密檢測(cè)領(lǐng)域發(fā)揮著更大的作用。顯微鏡的商業(yè)化發(fā)展已進(jìn)入成熟期,主要需求來(lái)自教學(xué)、生命科學(xué)的研究及精密檢測(cè)等,全球市場(chǎng)呈現(xiàn)平緩的增長(zhǎng)態(tài)勢(shì)。然而,**、、顯微鏡產(chǎn)品(如多光子...
多光子激發(fā)掃描顯微成像系統(tǒng)的不足。只能對(duì)熒光成像。如果樣品包括能夠吸收激發(fā)光的色團(tuán),如色素,樣品可能受到熱損傷。分辨率略有降低,雖然可以通過(guò)同時(shí)利用共焦的小孔得到改善,但是信號(hào)會(huì)有損耗。受昂貴的超快激光器限制,多光子掃描顯微鏡的成本較高。多光子激發(fā)顯微鏡應(yīng)用舉例。動(dòng)物和腦片神經(jīng)細(xì)胞結(jié)構(gòu)與功能、動(dòng)物腦皮層的成像、胚胎發(fā)育過(guò)程的長(zhǎng)時(shí)間動(dòng)態(tài)觀測(cè)、多光子激發(fā)光解籠、細(xì)胞內(nèi)微區(qū)鈣動(dòng)力學(xué)、多光子激發(fā)自發(fā)熒光、其它應(yīng)用。多光子顯微鏡銷售/營(yíng)銷策略建議。美國(guó)共聚焦多光子顯微鏡準(zhǔn)確定位使用基因編碼的熒光探針可以在突觸和細(xì)胞分辨率下監(jiān)測(cè)體內(nèi)神經(jīng)元信號(hào),這是揭示動(dòng)物神經(jīng)活動(dòng)復(fù)雜機(jī)制的關(guān)鍵。使用雙光子顯微鏡(2PM)...
通過(guò)添加FACED模塊,可以將基于標(biāo)準(zhǔn)振鏡的現(xiàn)有2PM輕松轉(zhuǎn)換為千赫茲成像系統(tǒng)。FACED雙光子熒光顯微鏡遵循光柵掃描,需要很少的計(jì)算處理,在稀疏或密集的標(biāo)記樣本中均可以使用,并且不受串?dāng)_的影響,而且對(duì)整個(gè)圖像平面采樣后可以進(jìn)行運(yùn)動(dòng)校正。實(shí)驗(yàn)中沒(méi)有觀察到光損傷的跡象,此外,子脈沖延遲到達(dá)相同的樣品位置,能為熒光團(tuán)提供充足的時(shí)間使其從易于破壞的暗態(tài)返回到基態(tài),可以明顯減少光漂白。使用現(xiàn)有的傳感器,F(xiàn)ACED雙光子熒光顯微鏡可以提供足夠的速度和靈敏度來(lái)檢測(cè)神經(jīng)元過(guò)程中的鈣瞬變和谷氨酸瞬變,以及來(lái)自細(xì)胞體的尖峰和亞閾值電壓。該組使用基于FACED的2PM顯微鏡,在小鼠大腦中實(shí)現(xiàn)了千赫茲速率的神經(jīng)活動(dòng)...
繼首代小型化雙光子顯微鏡在國(guó)際上獲得小鼠自由行為過(guò)程中大腦神經(jīng)元和突觸的動(dòng)態(tài)圖像后,我們成功研制了第二代小型化雙光子顯微鏡。它具有更大的成像視野和三維成像能力,可以清晰穩(wěn)定地對(duì)自由活動(dòng)小鼠三維腦區(qū)的數(shù)千個(gè)神經(jīng)元進(jìn)行成像,實(shí)現(xiàn)對(duì)同一批神經(jīng)元的一個(gè)月追蹤記錄。通過(guò)對(duì)微光學(xué)系統(tǒng)的重新設(shè)計(jì)系統(tǒng)的。微物鏡工作距離延長(zhǎng)至1mm,實(shí)現(xiàn)無(wú)創(chuàng)成像。內(nèi)嵌可拆卸的快速軸向掃描模塊,可采集深度180微米的3D體成像和多平面快速切換的實(shí)時(shí)成像。該掃描模塊由一個(gè)快速的電動(dòng)變焦透鏡和一對(duì)中繼透鏡組成,在不同深度成像時(shí)可保持放大倍率恒定。其變焦模塊重量,研究人員可根據(jù)實(shí)驗(yàn)需求自由拆卸。此外,新版微型化成像探頭可整...
對(duì)兩個(gè)遠(yuǎn)距離(相距大于1-2 mm)的成像部位,通常使用兩條單獨(dú)的路徑進(jìn)行成像;對(duì)于相鄰區(qū)域,通常使用單個(gè)物鏡的多光束進(jìn)行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_問(wèn)題,這個(gè)問(wèn)題可以通過(guò)事后光源分離方法或時(shí)空復(fù)用方法來(lái)解決。事后光源分離方法指的是用算法來(lái)分離光束消除串?dāng)_;時(shí)空復(fù)用方法指的是同時(shí)使用多個(gè)激發(fā)光束,每個(gè)光束的脈沖在時(shí)間上延遲,這樣就可以暫時(shí)分離被不同光束激發(fā)的單個(gè)熒光信號(hào)。引入越多路光束就可以對(duì)越多的神經(jīng)元進(jìn)行成像,但是多路光束會(huì)導(dǎo)致熒光衰減時(shí)間的重疊增加,從而限制了區(qū)分信號(hào)源的能力;并且多路復(fù)用對(duì)電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來(lái)維持近似單光...
多光子激發(fā)在紫外成像的優(yōu)勢(shì)在可見(jiàn)光脈沖中能得到紫外衍射的顯微觀察像。即使不使用紫外域光源、光學(xué)元件用可見(jiàn)光源、光學(xué)元件就能得到紫外光激勵(lì)的高空間分辨率圖像。多光子在生物成像中的優(yōu)勢(shì)在生物顯微鏡觀察方面,較早考慮的是不損壞生物本身的活性狀態(tài),維持水分、離子濃度、氧和養(yǎng)分的流通。在光觀察場(chǎng)合,無(wú)論是熱還是光子能量方面都必須停留在細(xì)胞不受損傷的照射量、光能量?jī)?nèi)。多光子顯微鏡則能夠滿足此,而且還具有很多優(yōu)點(diǎn)。如三維分辨率、深度侵入、在散射效率、背景光、信噪比、控制等方面,均有以往激光顯微鏡不具備,或具有無(wú)法比擬的超越特性。顯微鏡產(chǎn)品正拉動(dòng)市場(chǎng)需求,多光子顯微鏡市場(chǎng)發(fā)展?jié)摿薮?。美?guó)清醒動(dòng)物多光子顯微鏡...
以往我們認(rèn)識(shí)的光電效應(yīng)是單光子光電效應(yīng),即一個(gè)電子在極短時(shí)間內(nèi)能吸收到一個(gè)光子而從金屬表面逸出。強(qiáng)激光的出現(xiàn)豐富了人們對(duì)于光電效應(yīng)的認(rèn)識(shí),用強(qiáng)激光照射金屬,由于其光子密度極大,一個(gè)電子在短時(shí)間吸收多個(gè)光子成為可能,從而形成多光子電效應(yīng),這已被實(shí)驗(yàn)證實(shí)。為什么一般討論的光電效應(yīng)都是指單光子光電效應(yīng)呢?這是因?yàn)?,在使用普通光源的情況下,電子吸收兩個(gè)以上光子能量的概率是非常非常小的,幾乎為零。事實(shí)上,愛(ài)因斯坦本人就考慮過(guò)在強(qiáng)光下發(fā)生光電效應(yīng)的可能性問(wèn)題。對(duì)此,他有如下的論述:光電效應(yīng)中的一個(gè)電子吸收兩個(gè)光子的幾率不會(huì)大于下雨天兩個(gè)雨滴同事打在一個(gè)螞蟻上的幾率。因此,多光子光電效應(yīng)在實(shí)驗(yàn)上的研究成為可...
2020年,TonmoyChakraborty等人提出了一種加快2PM軸向掃描速度的方法[2]。在光學(xué)顯微鏡中,物鏡或樣品的緩慢軸向掃描速度限制了體積成像的速度。近年來(lái),通過(guò)使用遠(yuǎn)程聚焦技術(shù)或電可調(diào)諧透鏡(ETL)已經(jīng)實(shí)現(xiàn)了快速軸向掃描;但是,遠(yuǎn)程聚焦中反射鏡的機(jī)械驅(qū)動(dòng)會(huì)限制軸向掃描速度,ETL會(huì)引入球面像差和更高階像差,從而無(wú)法進(jìn)行高分辨率成像。為了克服這些局限性,該組引入了一種新穎的光學(xué)設(shè)計(jì),能將橫向掃描轉(zhuǎn)換為可用于高分辨率成像的無(wú)球差的軸向掃描。該設(shè)計(jì)有兩種實(shí)現(xiàn)方式,第一種能夠執(zhí)行離散的軸向掃描,另一種能夠進(jìn)行連續(xù)的軸向掃描。具體裝置如圖3a所示,由兩個(gè)垂直臂組成,每個(gè)臂中都有一個(gè)4F望...
Ca2+是重要的第二信使,對(duì)于調(diào)節(jié)細(xì)胞的生理反應(yīng)具有重要的作用,開(kāi)發(fā)和利用雙光子熒光顯微成像技術(shù)對(duì)Ca2+熒光信號(hào)進(jìn)行觀測(cè),可以從某些方面對(duì)有機(jī)體或細(xì)胞的變化機(jī)制進(jìn)行分析,具有重要的意義。利用雙光子熒光顯微成像技術(shù)可以觀察細(xì)胞內(nèi)用熒光探針標(biāo)記的 Ca2*的時(shí)間和空間的熒光圖像的變化,還可以觀察細(xì)胞某一層面或局部的(Ca2+)熒光圖像和變化。通過(guò)對(duì)單細(xì)胞的研究發(fā)現(xiàn),Ca2+不僅在細(xì)胞局部區(qū)域間的分布是不均勻的,而且細(xì)胞內(nèi)各局部區(qū)域的不同深度或?qū)哟伍g也存在不同程度的 Ca2+梯差即所謂的空間 Ca2梯差。從雙光子到三光子甚至四光子,這種非線性成像技術(shù)通常也被統(tǒng)稱為多光子顯微鏡。美國(guó)靈長(zhǎng)類多光子顯微...
隨著生物分子光學(xué)標(biāo)記技術(shù)的不斷進(jìn)步,光學(xué)技術(shù)在揭示生命活動(dòng)基本規(guī)律的研究中正發(fā)揮越來(lái)越重要的作用,也為醫(yī)學(xué)診療提供了更多、更有效的手段。生物醫(yī)學(xué)光學(xué)(BiomedicalOptics)是近年來(lái)受到國(guó)際光學(xué)界和生物醫(yī)學(xué)界關(guān)注的研究熱點(diǎn),在生物活檢、光動(dòng)力、細(xì)胞結(jié)構(gòu)與功能檢測(cè)、基因表達(dá)規(guī)律的在體研究等問(wèn)題上取得了一系列研究成果,目前正在從宏觀到微觀上對(duì)大腦活動(dòng)與功能進(jìn)行多層面的研究。細(xì)胞重大生命活動(dòng)(包括細(xì)胞增殖、分化、凋亡及信號(hào)轉(zhuǎn)導(dǎo))的發(fā)生和調(diào)節(jié)是通過(guò)生物大分子間(如蛋白質(zhì)-蛋白質(zhì)、蛋白質(zhì)-核酸等)相互作用來(lái)實(shí)現(xiàn)的。蛋白質(zhì)作為基因調(diào)控的產(chǎn)物,與細(xì)胞和機(jī)體生理過(guò)程代謝直接相關(guān),深入研究基因表達(dá)及蛋...
光學(xué)成像技術(shù)與分子生物學(xué)技術(shù)的結(jié)合為研究上述科學(xué)問(wèn)題提供了條件與可能。因此,在現(xiàn)代分子生物學(xué)技術(shù)基礎(chǔ)上,急需發(fā)展新的成像技術(shù)。在動(dòng)物體內(nèi),如何實(shí)現(xiàn)基因表達(dá)及蛋白質(zhì)之間相五作用的實(shí)時(shí)在體成像監(jiān)測(cè)是當(dāng)前迫切需要解決的重大科學(xué)技術(shù)問(wèn)題。這是也生物學(xué)、信息科學(xué)(光學(xué))和基礎(chǔ)臨床醫(yī)學(xué)等學(xué)科共同感興趣的重大問(wèn)題。對(duì)這-一一科學(xué)問(wèn)題的研究不僅有助于闡明生命活動(dòng)的基本規(guī)律、認(rèn)識(shí)疾病的發(fā)展規(guī)律,而且對(duì)創(chuàng)新藥物研究、藥物療效評(píng)價(jià)以及發(fā)展疾病早期診斷技術(shù)等產(chǎn)生重大影響。多光子成像是一種非線性的過(guò)程,信號(hào)產(chǎn)生要求功率密度達(dá)到MW/cm2的量級(jí)。美國(guó)激光掃描多光子顯微鏡方案對(duì)兩個(gè)遠(yuǎn)距離(相距大于1-2 mm)的成像部位...
針對(duì)雙光子熒光顯微鏡的特點(diǎn),從理論上分析雙光子成像特點(diǎn),并搭建一套時(shí)間、空間分辨率高,能實(shí)時(shí)、動(dòng)態(tài)、多參數(shù)測(cè)量的雙光子熒光顯微鏡系統(tǒng)。具體系統(tǒng)應(yīng)實(shí)現(xiàn)∶(1)能對(duì)不同染料的雙光子熒光進(jìn)行探測(cè);(2)用特定染料對(duì)樣品標(biāo)記以后,能實(shí)現(xiàn)雙光子熒光的三維成像;(3)通過(guò)實(shí)驗(yàn)的研究,改進(jìn)雙光子熒光顯微成像系統(tǒng);(4)在保證成像質(zhì)量的前提下,簡(jiǎn)化整個(gè)系統(tǒng),使得實(shí)驗(yàn)操作方便、安全。單光子激發(fā)熒光的過(guò)程,就是熒光分子吸收一個(gè)光子,從基態(tài)躍遷到激發(fā)態(tài),躍遷以后,能量較大的激發(fā)態(tài)分子,通過(guò)內(nèi)轉(zhuǎn)換把部分能量轉(zhuǎn)移給周圍的分子,自己回到比較低電子激發(fā)態(tài)的比較低振動(dòng)能級(jí)。處于比較低電子激發(fā)態(tài)的比較低振動(dòng)能級(jí)像在生物醫(yī)學(xué)光學(xué)...
在生物成像中,我司多光子顯微鏡具有清(清晰),快(快速),深(深層),活這四個(gè)方面。結(jié)合了多光子上轉(zhuǎn)化材料以及時(shí)間編碼的結(jié)構(gòu)光超分辨技術(shù),實(shí)現(xiàn)了快速(50MHz的掃描速度),超分辨(超衍射極限)成像。作為一種新的高速,超高分辨率的成像系統(tǒng),MUTE-SIM可以幫助我們對(duì)快速運(yùn)動(dòng)的生物圖像進(jìn)行分辨率高的成像。盡管關(guān)于深度成像的應(yīng)用我們沒(méi)有進(jìn)一步展示,但是結(jié)合1560nm近紅外光相對(duì)于可見(jiàn)光更佳的穿透性,我們相信該技術(shù)將有利于對(duì)生物組織進(jìn)行高速,超分辨,高深度地成像,有助于生物影像學(xué)的發(fā)展。滔博生物TOP-Bright是一家集研發(fā),生產(chǎn),銷售于一體的專注于神經(jīng)科學(xué)產(chǎn)品及致力于向高校、科...
使用基因編碼的熒光探針可以在突觸和細(xì)胞分辨率下監(jiān)測(cè)體內(nèi)神經(jīng)元信號(hào),這是揭示動(dòng)物神經(jīng)活動(dòng)復(fù)雜機(jī)制的關(guān)鍵。使用雙光子顯微鏡(2PM)可以以亞細(xì)胞分辨率對(duì)鈣離子傳感器和谷氨酸傳感器成像,從而測(cè)量不透明大腦深處的活動(dòng);成像膜電壓變化能直接反映神經(jīng)元活動(dòng),但神經(jīng)元活動(dòng)的速度對(duì)于常規(guī)的2PM來(lái)說(shuō)太快。目前電壓成像主要通過(guò)寬場(chǎng)顯微鏡實(shí)現(xiàn),但它的空間分辨率較差并且于淺層深度。因此要在不透明的大腦中以高空間分辨率對(duì)膜電壓變化進(jìn)行成像,需要明顯提高2PM的成像速率。多光子顯微鏡作為神經(jīng)科學(xué)重要的研究工具,近年來(lái)發(fā)展快速,品牌也眾多。全自動(dòng)多光子顯微鏡峰值功率密度SternandJeanMarx在評(píng)論中說(shuō):祖家能夠...
從產(chǎn)品類型及技術(shù)方面來(lái)看,正置顯微鏡占據(jù)絕大多數(shù)市場(chǎng)。2020年,全球多光子激光掃描正置顯微鏡市場(chǎng)達(dá)到87.30百萬(wàn)美元,預(yù)計(jì)到2027年該部分市場(chǎng)將達(dá)到154.02百萬(wàn)美元,年復(fù)合增長(zhǎng)率(2021-2027)為8.48%。中國(guó)多光子激光掃描正置顯微鏡市場(chǎng)達(dá)到13.32百萬(wàn)美元,預(yù)計(jì)到2027年該部分市場(chǎng)將達(dá)到25.21百萬(wàn)美元,年復(fù)合增長(zhǎng)率(2021-2027)為9.58%。從產(chǎn)品市場(chǎng)應(yīng)用情況來(lái)看,研究機(jī)構(gòu)為主要應(yīng)用領(lǐng)域,2020年約占全球市場(chǎng)46.28%。2020年,全球多光子激光掃描顯微鏡研究機(jī)構(gòu)應(yīng)用消費(fèi)量為174臺(tái),預(yù)計(jì)2027年達(dá)到349臺(tái),2021-2027年復(fù)合增長(zhǎng)率(CAGR)...
Ca2+是重要的第二信使,對(duì)于調(diào)節(jié)細(xì)胞的生理反應(yīng)具有重要的作用,開(kāi)發(fā)和利用雙光子熒光顯微成像技術(shù)對(duì)Ca2+熒光信號(hào)進(jìn)行觀測(cè),可以從某些方面對(duì)有機(jī)體或細(xì)胞的變化機(jī)制進(jìn)行分析,具有重要的意義。利用雙光子熒光顯微成像技術(shù)可以觀察細(xì)胞內(nèi)用熒光探針標(biāo)記的 Ca2*的時(shí)間和空間的熒光圖像的變化,還可以觀察細(xì)胞某一層面或局部的(Ca2+)熒光圖像和變化。通過(guò)對(duì)單細(xì)胞的研究發(fā)現(xiàn),Ca2+不僅在細(xì)胞局部區(qū)域間的分布是不均勻的,而且細(xì)胞內(nèi)各局部區(qū)域的不同深度或?qū)哟伍g也存在不同程度的 Ca2+梯差即所謂的空間 Ca2梯差。多光子顯微鏡技術(shù)的優(yōu)勢(shì)如何?又有哪些應(yīng)用?飛秒激光多光子顯微鏡Ultima 2P Plus ...
根據(jù)阿貝成像原理,許多光學(xué)成像系統(tǒng)是一個(gè)低通濾波器,物平面包含從低頻到高頻的信息,透鏡口徑會(huì)限制高頻信息通過(guò),只允許一定的低頻通過(guò),因此丟失了高頻信息會(huì)使成像所得圖像的細(xì)節(jié)變模糊,降低分辨率。對(duì)于三維成像來(lái)說(shuō),寬場(chǎng)照明時(shí)得到的信息不僅包含物鏡焦平面上樣品的部分信息,同時(shí)還包含焦平面外的樣品信息。由于受到焦平面外的信息干擾,常規(guī)熒光顯微鏡無(wú)法獲得層析圖像。三維結(jié)構(gòu)光照明顯微鏡能夠提高分辨率、獲得層析圖像,是因?yàn)槔锰囟ńY(jié)構(gòu)的照明光能引入樣品的高頻信息,當(dāng)結(jié)構(gòu)光的空間頻率足夠高時(shí),只有靠近焦面的部分才能被結(jié)構(gòu)光調(diào)制,超出這一區(qū)域,逐漸轉(zhuǎn)變?yōu)榫鶆蛘彰鳎簿褪侵挥薪姑娓浇挠邢迏^(qū)域具有相對(duì)完整的頻譜信...
在生物成像中,我司多光子顯微鏡具有清(清晰),快(快速),深(深層),活這四個(gè)方面。結(jié)合了多光子上轉(zhuǎn)化材料以及時(shí)間編碼的結(jié)構(gòu)光超分辨技術(shù),實(shí)現(xiàn)了快速(50MHz的掃描速度),超分辨(超衍射極限)成像。作為一種新的高速,超高分辨率的成像系統(tǒng),MUTE-SIM可以幫助我們對(duì)快速運(yùn)動(dòng)的生物圖像進(jìn)行分辨率高的成像。盡管關(guān)于深度成像的應(yīng)用我們沒(méi)有進(jìn)一步展示,但是結(jié)合1560nm近紅外光相對(duì)于可見(jiàn)光更佳的穿透性,我們相信該技術(shù)將有利于對(duì)生物組織進(jìn)行高速,超分辨,高深度地成像,有助于生物影像學(xué)的發(fā)展。滔博生物TOP-Bright是一家集研發(fā),生產(chǎn),銷售于一體的專注于神經(jīng)科學(xué)產(chǎn)品及致力于向高校、科...
針對(duì)雙光子熒光顯微鏡的特點(diǎn),從理論上分析雙光子成像特點(diǎn),并搭建一套時(shí)間、空間分辨率高,能實(shí)時(shí)、動(dòng)態(tài)、多參數(shù)測(cè)量的雙光子熒光顯微鏡系統(tǒng)。具體系統(tǒng)應(yīng)實(shí)現(xiàn)∶(1)能對(duì)不同染料的雙光子熒光進(jìn)行探測(cè);(2)用特定染料對(duì)樣品標(biāo)記以后,能實(shí)現(xiàn)雙光子熒光的三維成像;(3)通過(guò)實(shí)驗(yàn)的研究,改進(jìn)雙光子熒光顯微成像系統(tǒng);(4)在保證成像質(zhì)量的前提下,簡(jiǎn)化整個(gè)系統(tǒng),使得實(shí)驗(yàn)操作方便、安全。單光子激發(fā)熒光的過(guò)程,就是熒光分子吸收一個(gè)光子,從基態(tài)躍遷到激發(fā)態(tài),躍遷以后,能量較大的激發(fā)態(tài)分子,通過(guò)內(nèi)轉(zhuǎn)換把部分能量轉(zhuǎn)移給周圍的分子,自己回到比較低電子激發(fā)態(tài)的比較低振動(dòng)能級(jí)。處于比較低電子激發(fā)態(tài)的比較低振動(dòng)能級(jí)像在生物醫(yī)學(xué)光學(xué)...
光學(xué)成像技術(shù)與分子生物學(xué)技術(shù)的結(jié)合為研究上述科學(xué)問(wèn)題提供了條件與可能。因此,在現(xiàn)代分子生物學(xué)技術(shù)基礎(chǔ)上,急需發(fā)展新的成像技術(shù)。在動(dòng)物體內(nèi),如何實(shí)現(xiàn)基因表達(dá)及蛋白質(zhì)之間相五作用的實(shí)時(shí)在體成像監(jiān)測(cè)是當(dāng)前迫切需要解決的重大科學(xué)技術(shù)問(wèn)題。這是也生物學(xué)、信息科學(xué)(光學(xué))和基礎(chǔ)臨床醫(yī)學(xué)等學(xué)科共同感興趣的重大問(wèn)題。對(duì)這-一一科學(xué)問(wèn)題的研究不僅有助于闡明生命活動(dòng)的基本規(guī)律、認(rèn)識(shí)疾病的發(fā)展規(guī)律,而且對(duì)創(chuàng)新藥物研究、藥物療效評(píng)價(jià)以及發(fā)展疾病早期診斷技術(shù)等產(chǎn)生重大影響。多光子顯微鏡可以進(jìn)行深層成像,且具有三維成像的能力,可以應(yīng)用于拍攝不透明的厚樣品。靈長(zhǎng)類多光子顯微鏡實(shí)驗(yàn)對(duì)于雙光子(2P)成像而言,離焦和近表面熒光...