膜片鉗技術(shù)原理:膜片鉗技術(shù)是用玻璃微電極吸管把只含1-3個離子通道、面積為幾個平方微米的細胞膜通過負壓吸引封接起來(見右圖),由于電極前列與細胞膜的高阻封接,在電極前列籠罩下的那片膜事實上與膜的其他部分從電學(xué)上隔離,因此,此片膜內(nèi)開放所產(chǎn)生的電流流進玻璃吸管,用一個極為敏感的電流監(jiān)視器(膜片鉗放大器)測量此電流強度,就單一離子通道電流膜片鉗技術(shù)的建立,對生物學(xué)科學(xué)特別是神經(jīng)科學(xué)是一資有重大意義的變革。這是一種以記錄通過離子通道的離子電流來反映細胞膜單一的(或多個的離子通道分子活動的技術(shù)。些技術(shù)的出現(xiàn)自然將細胞水平和分子水平的生理學(xué)研究聯(lián)系在一起,同時又將神經(jīng)科學(xué)的不同分野必然地融匯在一起,改變...
膜片鉗技術(shù)是神經(jīng)科學(xué)領(lǐng)域非常重要的一項技術(shù),1976年由國馬普生物物理研究所Neher和Sakmann發(fā)明,從而在活細胞上記錄到單個離子通道的電流。近半個世紀來,膜片鉗技術(shù)已經(jīng)成為神經(jīng)科學(xué)領(lǐng)域較常用也是較實用的技術(shù)之一,具有極大的精確性和靈活性,能夠揭示離子通道,單細胞突觸反應(yīng),及神經(jīng)環(huán)路連接等多層次的電生理特性。做過膜片鉗的人都知道,膜片鉗的信號采集設(shè)備一般由前置放大器,放大器,模數(shù)/數(shù)模轉(zhuǎn)換器等構(gòu)成,神經(jīng)元電信號先通過前置放大器(headstage)初步放大,后傳輸入放大器進一步放大,再傳入模數(shù)轉(zhuǎn)換器轉(zhuǎn)化為數(shù)字信號,后被計算機采集。下圖顯示的是我們較常使用的AXON和HEKA膜片鉗的一個信...
1976年德國馬普生物物理化學(xué)研究所Neher和Sakmann在青蛙肌細胞上記錄記錄到AChjihuo的單通道離子電流1980年Sigworth等用負壓吸引,得到10-100GΩ的高阻封接(Giga-sea1),降低了記錄時的噪聲1981年Hamill和Neher等引進了膜片游離技術(shù)和全細胞記錄技術(shù)1983年10月,《Single-ChannelRecording》一書問世,奠定了膜片鉗技術(shù)的里程碑。膜片鉗技術(shù)原理膜片鉗技術(shù)是用玻璃微電極接觸細胞,形成吉歐姆(GΩ)阻抗,使得與電極前列開口處相接的細胞膜的膜片與周圍在電學(xué)上絕緣,在此基礎(chǔ)上固定電位,對此膜片上的離子通道的離子電流(pA級)進行監(jiān)...
膜片鉗技術(shù)本質(zhì)上也屬于電壓鉗范疇,兩者的區(qū)別關(guān)鍵在于:①膜電位固定的方法不同;②電位固定的細胞膜面積不同,進而所研究的離子通道數(shù)目不同。電壓鉗技術(shù)主要是通過保持細胞跨膜電位不變,并迅速控制其數(shù)值,以觀察在不同膜電位條件下膜電流情況。因此只能用來研究整個細胞膜或一大塊細胞膜上所有離子通道活動。目前電壓鉗主要用于巨大細胞的全性能電流的研究,特別在分子克隆的卵母細胞表達電流的鑒定中發(fā)揮著其他技術(shù)不能替代的作用。該技術(shù)的主要缺陷是必須在細胞內(nèi)插入兩個電極,對細胞損傷很大,在小細胞如元,就難以實現(xiàn),又因細胞形態(tài)復(fù)雜,很難保持細胞膜各處生物特性的一致。膜片鉗技術(shù)實現(xiàn)了小片膜的孤立和高阻封接的形成,增寬了記...
膜片鉗技術(shù)∶從一小片(約幾平方微米)膜獲取電子學(xué)方面信息的技術(shù),即保持跨膜電壓恒定——電壓鉗位,從而測量通過膜離子電流大小的技術(shù)。通過研究離子通道的離子流,從而了解離子運輸、信號傳遞等信息?;驹恚豪秘摲答侂娮泳€路,將微電極前列所吸附的一個至幾個平方微米的細胞膜的電位固定在一定水平上,對通過通道的微小離子電流作動態(tài)或靜態(tài)觀察,從而研究其功能。研究離子通道的一種電生理技術(shù),是施加負壓將玻璃微電極的前列(開口直徑約1μm)與細胞膜緊密接觸,形成高阻抗封接,可以精確記錄離子通道微小電流。能制備成細胞貼附、內(nèi)面朝外和外面朝內(nèi)三種單通道記錄方式,以及另一種記錄多通道的全細胞方式。膜片鉗技術(shù)實現(xiàn)了小片...
實驗溶液 浸溶細胞溶液和微電極玻璃管內(nèi)的填充液成分對全細胞膜片鉗記錄也是很重要的內(nèi)容,這關(guān)系到封接的容易程度、細胞存活狀態(tài)及膜電位的狀態(tài)等。在實驗記錄過程中,尤其是神經(jīng)生物學(xué)實驗,需要迅速更換細胞浸溶液濃度以免受體敏感性降低(desensitization)或需要模擬快速突觸反應(yīng)的壽命。原則上細胞的浸溶液成分或玻璃管內(nèi)填充液成分應(yīng)該與細胞外或細胞內(nèi)間質(zhì)的成分相似,實際研究中,為了探討某些通道或電位特性,對這些實驗溶液的成分或濃度會作必要調(diào)整,沒有哪種溶液是理想的。離子通道是一種特殊的膜蛋白,它橫跨整個膜結(jié)構(gòu),是細胞內(nèi)部與部外聯(lián)系的橋梁和細胞內(nèi)外物質(zhì)交換的孔道。美國腦片膜片鉗電流鉗制在心血管藥理...
與藥物作用有關(guān)的心肌離子通道,心肌細胞通過各種離子通道對膜電位和動作電位穩(wěn)態(tài)的維持而保持正常的功能。近年來,國外學(xué)者在人類心肌細胞離子通道特性的研究中取得了許多進展,使得心肌藥理學(xué)實驗由動物細胞模型向人心肌細胞成為可能。對離子通道生理與病理情況下作用機制的研究,通過對各種生理或病理情況下細胞膜某種離子通道特性的研究,了解該離子的生理意義及其在疾病過程中的作用機制。如對鈣離子在腦缺血神經(jīng)細胞損害中作用機制的研究表明,缺血性腦損害過程中,Ca2+介導(dǎo)現(xiàn)象起非常重要的作用,缺血缺氧使Ca2+通道開放,過多的Ca2+進入細胞內(nèi)就出現(xiàn)Ca2+超載,導(dǎo)致神經(jīng)元及細胞膜損害,膜轉(zhuǎn)運功能障礙,嚴重的可使神經(jīng)元...
1976年德國馬普生物物理化學(xué)研究所Neher和Sakmann在青蛙肌細胞上用雙電極鉗制膜電位的同時,記錄到ACh啟動的單通道離子電流,從而產(chǎn)生了膜片鉗技術(shù)。1980年Sigworth等在記錄電極內(nèi)施加5-50cmH2O的負壓吸引,得到10-100GΩ的高阻封接(Giga-seal),明顯降低了記錄時的噪聲實現(xiàn)了單根電極既鉗制膜片電位又記錄單通道電流的突破。1981年Hamill和Neher等對該技術(shù)進行了改進,引進了膜片游離技術(shù)和全細胞記錄技術(shù),從而使該技術(shù)更趨完善,具有1pA的電流靈敏度、1μm的空間分辨率和10μs的時間分辨率。1983年10月,《Single-ChannelRecord...
細胞是動物和人體的基本單元,細胞與細胞內(nèi)的通信是依靠其膜上的離子通道進行的,離子和離子通道是細胞興奮的基礎(chǔ),亦即產(chǎn)生生物電信號的基礎(chǔ),生物電信號通常用電學(xué)或電子學(xué)方法進行測量。由此形成了一門細胞學(xué)科--電生理學(xué)。膜片鉗技術(shù)已成為研究離子通道的黃金標準。 電壓門控性離子通道:膜上通道蛋白的帶點集團在膜電位改變時,在電場的作用下,重新分布導(dǎo)致通道的關(guān)閉,同時有電荷移動,稱為門控電流。 配體門控離子通道:神經(jīng)遞質(zhì)(如乙酰膽堿)、ji素等與通道蛋白上的特定位點結(jié)合,引起蛋白構(gòu)像的改變,導(dǎo)致通道的打開。 微電極的制備膜片鉗電極是用外徑為1-2mm的毛細玻璃管拉制成的。進口雙分子層膜片鉗細...
把膜電位鉗位電壓調(diào)到-80--100mV,再用鉗位放大器的控制鍵把全細胞瞬態(tài)充電電流調(diào)定至零位(EPC-10的控制鍵稱為C-slow和C-series;Axopatch200標為全細胞電容和系列電阻)。寫下細胞的電容值Cc和未補整的系列電阻值Rs,用于消除全細胞瞬態(tài)電流,計算鉗位的固定時間(即RsCc),然啟根據(jù)歐姆定律從測定脈沖電流的振幅算出細胞的電阻RC。緩慢調(diào)節(jié)Rs旋鈕注意測定脈沖反應(yīng)的變化,逐漸增加補整的比例。如果RS補整非常接近振蕩的閾值,RS或Cc的微細變化都會達到震蕩的閾值,產(chǎn)生電壓的振蕩而使細胞受損。因此應(yīng)當在RS補整水平寫不穩(wěn)定閾值之間留有10%-20%的余地為安全。準備資料...
膜片鉗放大器的工作模式;(1)電壓鉗模式∶在鉗制細胞膜電位的基礎(chǔ)上改變膜電位,記錄離子通道電流的變化,記錄的是諸如通道電流;EPSC;IPSC等電流信號。是膜片鉗的基本工作模式.(2)屯流鉗素向細胞內(nèi)注入刺激電流,記錄膜電位對刺激電流的反應(yīng)。記錄的是諸如動作電位,EPSP;IPSP等電壓信號。膜片鉗技術(shù)實現(xiàn)膜電位固定的關(guān)鍵是在玻璃微電極前列邊緣與細胞膜之間形成高阻(10GΩ )密封,使電極前列開口處相接的細胞膜片與周圍環(huán)境在電學(xué)上隔離,并通過外加命令電壓鉗制膜電位。膜片鉗80%的工夫在于刺備細胞。日本雙電極膜片鉗價格膜片鉗技術(shù)發(fā)展歷史:1976年德國馬普生物物理化學(xué)研究所Neher和Sakma...
細胞是動物和人體的基本組成單元,細胞與細胞內(nèi)的通信,是依靠其膜上的離子通道進行的,離子和離子通道是細胞興奮的基礎(chǔ),亦即產(chǎn)生生物電信號的基礎(chǔ),生物電信號通常用電學(xué)或電子學(xué)方法進行測量。由此形成了一門細胞學(xué)科———電生理學(xué)(electrophysiology),即是用電生理的方法來記錄和分析細胞產(chǎn)生電的大小和規(guī)律的科學(xué)。早期的研究多使用雙電極電壓鉗技術(shù)作細胞內(nèi)電活動的記錄?,F(xiàn)代膜片鉗技術(shù)是在電壓鉗技術(shù)的基礎(chǔ)上發(fā)展起來的。典型的單通道電流呈一種振幅相同而持續(xù)時間不等的脈沖樣變化。進口多通道膜片鉗離子電流膜片鉗技術(shù)的創(chuàng)立取代了電壓鉗技術(shù),是細胞電生理研究的一個飛躍,使得離子通道的研究,從宏觀深入到微觀...
與藥物作用有關(guān)的心肌離子通道,心肌細胞通過各種離子通道對膜電位和動作電位穩(wěn)態(tài)的維持而保持正常的功能。近年來,國外學(xué)者在人類心肌細胞離子通道特性的研究中取得了許多進展,使得心肌藥理學(xué)實驗由動物細胞模型向人心肌細胞成為可能。對離子通道生理與病理情況下作用機制的研究,通過對各種生理或病理情況下細胞膜某種離子通道特性的研究,了解該離子的生理意義及其在疾病過程中的作用機制。如對鈣離子在腦缺血神經(jīng)細胞損害中作用機制的研究表明,缺血性腦損害過程中,Ca2+介導(dǎo)現(xiàn)象起非常重要的作用,缺血缺氧使Ca2+通道開放,過多的Ca2+進入細胞內(nèi)就出現(xiàn)Ca2+超載,導(dǎo)致神經(jīng)元及細胞膜損害,膜轉(zhuǎn)運功能障礙,嚴重的可使神經(jīng)元...
膜片鉗技術(shù)的發(fā)展∶全自動膜片鉗技術(shù)(Automated patch clamp technique)的出現(xiàn)標志著膜片鉗技術(shù)已經(jīng)發(fā)展到了一個嶄新階段,從這個意義上說,前面所講的膜片鉗技術(shù)我們稱之為傳統(tǒng)膜片鉗技術(shù)( Traditional patch clamp technique),傳統(tǒng)膜片鉗技術(shù)每次只能記錄一個細胞(或一對細胞),對實驗人員來說是一項耗時耗力的工作,不適合在藥物開發(fā)初期和中期進行大量化合物的篩選,也不適合需要記錄火量細胞的基礎(chǔ)實驗研究。全自動膜片鉗技術(shù)的出現(xiàn)在很大程度上解決了這些問題,它不僅通量高,一次能記錄幾個甚至幾十個細胞,而且從找細胞、形成封接、破膜等整個實驗操作實現(xiàn)了自...