隨著技術的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結合它的特點,大致可以分成深和活兩個方面的提升。深要想讓激發(fā)激光進入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標本改造。關于裝置優(yōu)化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關于標本,其中影響光傳播的主要是物質吸收和散射,解決這個問題,我們需要對樣本進行透明化處理。一種方法是運用某種物質將標本浸泡,使其中的物質(主要是脂質)被破壞或溶解。另一種方法是運用電泳將脂質電解,讓標本“透明度”提高。高光子密度帶來的高能量容易損傷細胞,所以雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖達到最大值所持續(xù)的周期只有十萬億分之一秒,而其頻率可以達到80至100兆赫,這樣即能達到雙光子激發(fā)的高光子密度要求,又能不損傷細胞,使掃描能更好地進行。對于顯微成像技術包含:寬場熒光顯微鏡、激光共聚焦顯微鏡、轉盤共聚焦顯微鏡、雙光子顯微鏡。美國bruker雙光子顯微鏡光刺激
雙光子顯微鏡的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子,在經(jīng)過一個很短的所謂激發(fā)態(tài)壽命的時間后,發(fā)射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子是相同的。雙光子激發(fā)需要很高的光子密度,為了不損傷細胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖寬度只有100飛秒,而其周期可以達到80至100兆赫茲。在使用高數(shù)值孔徑的物鏡將脈沖激光的光子聚焦時,物鏡的焦點處的光子密度是比較高的,雙光子激發(fā)只發(fā)生在物鏡的焦點上,所以雙光子顯微鏡不需要共聚焦,提高了熒光檢測效率。美國ultima雙光子顯微鏡代理商雙光子顯微鏡將得到更大的發(fā)展與更廣的應用。
雙光子顯微鏡為什么穿透能力強?因為組織對可見光區(qū)域的較強吸收和散射帶來兩個嚴重的問題第1個是激發(fā)光的減弱,第2個就是另外就是由于物鏡本身光的光學特性,單光子激發(fā)的背景較強,所以才有共聚焦系統(tǒng)提高成像的分辨率因為組織對可見光區(qū)域的較強吸收和散射帶來兩個嚴重的問題第1個是激發(fā)光的減弱,第2個就是另外就是由于物鏡本身光的光學特性,單光子激發(fā)的背景較強,所以才有共聚焦系統(tǒng)提高成像的分辨率剛好雙光子在這兩點具有很大的優(yōu)勢上面的內容基本在談到雙光子優(yōu)勢都會相對說明,在實際操作中成像的深度和樣品的關系很大,雙光子成像利用高亮度的熒光標記材料,已經(jīng)有做到mm級別的穿透深度
雙光子技術在醫(yī)療診斷應用中具有巨大的潛力,需要系統(tǒng)的醫(yī)學研究與龐大的醫(yī)療數(shù)據(jù)加以支撐,通過研究人體基于多光子成像技術,進行細胞結構、生化成分、微環(huán)境、組織形態(tài)、代謝功能的影響信息,找到與疾病的細胞學、分子生物學、組織病理學、診斷和特征的關聯(lián)關系,共同探究生理病理基礎和分子細胞生物學機制,篩選鑒定、皮膚病、自身免疫病及其他疑難疾病的診斷及鑒別診斷依據(jù),建立全新的多光子細胞診斷的完整數(shù)據(jù)庫,定義出針對不同疾病的多光子臨床檢測設備的產品標準。討論環(huán)節(jié),來自病理科、呼吸中心、心臟科、神經(jīng)科、皮膚科及研究所的多位醫(yī)師及研究人員紛紛結合各自的工作領域與王愛民副教授展開了熱烈的討論,其中毛發(fā)中心楊頂權主任計劃再次邀請王愛民副教授進行學術交流。雙光子顯微鏡只有焦平面處才能形成雙光子吸收,而焦平面之外由于光強低無法被發(fā)動,所以雙光子成像更清晰。
雙光子顯微鏡的應用由于適合動態(tài)成像,雙光子顯微鏡一經(jīng)問世便很快應用于神經(jīng)科學、遺傳發(fā)育、藥物代謝等領域。雙光子顯微鏡能夠在細胞甚至是亞細胞水平上對***神經(jīng)細胞的形態(tài)結構、離子濃度、細胞運動、分子相互作用等進行直接成像監(jiān)測,而且能夠進行光裂解、光轉染和光損傷等光學操縱。同時,雙光子顯微鏡能動態(tài)監(jiān)測**在體內的生長和轉移,并可對**治療過程中*細胞的變化進行實時觀測和評估。隨著光學技術、熒光探針技術、計算機成像技術的發(fā)展,雙光子顯微技術會得到更大提升和更廣的應用,未來不僅用于基礎研究,也將擴展到臨床應用。在深度組織中以較長時間對細胞成像,雙光子顯微鏡是當前之選。國外熒光激光雙光子顯微鏡磷光壽命計數(shù)
雙光子顯微鏡能夠進行指標成像;美國bruker雙光子顯微鏡光刺激
美國霍華德·休斯醫(yī)學研究所在JaneliaFarmResearchCampus的吉娜博士小組與來自中科院上海光機所強場激光物理國家重點實驗室的王琛博士較近成功將一種新的自適應光學的方法和雙光子顯微鏡結合,研制出一種新的自適應光學雙光子熒光顯微鏡。通過校正小鼠大腦的像差,在視覺皮層的不同深度處均獲得了提高數(shù)倍的成像分辨率和信號強度,明顯改進了成像質量,使得原來在鼠腦中不可見或者模糊的細節(jié)變得清晰可見,她們成功將該方法應用于老鼠視覺皮層第五層(約500μm)的形貌結構成像和鈣離子功能成像。這一新的自適應光學方法,使得在小鼠深層區(qū)域成像中獲得近衍射極限的成像分辨率成為現(xiàn)實。這一成果發(fā)表在較新一期的《NatureMethods》。美國bruker雙光子顯微鏡光刺激