TOPTICAFemtoFiberultra920超快光纖激光器是一種易于操作且無需維護的激光系統(tǒng)。其輸出波長為920nm,非常適合常規(guī)熒光基團(如GFP,eGFP,Eosin,GCaMP,CFP,Calcein或者Venus)的雙光子激發(fā)。能給熒光基團提供比較高的峰值功率,常用于神經(jīng)科學和其他與激光有關的生物光子學學科。而且其獨特設計(制造簡單且經(jīng)濟高效的光源)對雙光子熒光顯微鏡發(fā)展的革新具有潛在的可能。在雙光子顯微鏡中,峰值功率就是亮度!如果您希望獲得比較好的圖像亮度,那么你就需要短脈沖,高功率,較重要的是需要干凈的時間脈沖形狀。FemtoFiberultra920具有足夠高的輸出功率,較短的脈沖和獨特的Clean-Pulse技術,以及具有相對比較高的峰值功率,使得其在雙光子顯微鏡中可以實現(xiàn)****的亮度,而不會對樣品造成不必要的加熱。FemtoFiberultra920交鑰匙,完全集成的色散補償(可確保樣品處的脈沖較短),內(nèi)置的功率控制,操作直觀以及其堅固而緊湊的設計,使該系統(tǒng)具有極為友好的用戶體驗,是非線性顯微鏡應用的較好解決方案。例如熒光蛋白的雙光子激發(fā)和基于SHG的對比機制。雙光子顯微鏡將得到更大的發(fā)展與更廣的應用。國外雙光子顯微鏡ultima
TOPTICAFemtoFiberultra920超快光纖激光器是一種易于操作和免維護的激光系統(tǒng)其輸出波長為920nm,非常適合常規(guī)熒光基團(如GFP、eGFP、曙紅、GCaMP、CFP、鈣黃綠素或金星)的雙光子激發(fā)。它可以為熒光基團提供相對較高的峰值功率,常用于神經(jīng)科學和其他與激光相關的光子學。此外,其獨特的設計(簡單和經(jīng)濟的光源)具有創(chuàng)新雙光子熒光顯微鏡發(fā)展的潛力。在雙光子顯微鏡中,峰值功率就是亮度!如果你想獲得更好的圖像亮度,那么你需要短脈沖,高功率,更重要的是,干凈的時間脈沖形狀。FemtoFiberultra920具有足夠高的輸出功率、短脈沖、獨特的Clean-Pulse技術和相對較高的峰值功率,這使得在雙光子顯微鏡中實現(xiàn)****亮度而無需對樣品進行不必要的加熱成為可能。FemtoFiberultra920全包式、完全集成的色散補償(可確保樣品處的短脈沖)、內(nèi)置電源控制、直觀的操作及其堅固緊湊的設計使系統(tǒng)具有非常友好的用戶體驗,是非線性顯微鏡應用的良好解決方案。例如,熒光蛋白的雙光子激發(fā)和基于SHG的對比機制國外2PPLUS雙光子顯微鏡掃描深度雙光子顯微鏡除了可以進行厚的組織樣品拍攝以外呢,可以在小鼠的的任何部位進行成像。
在傳統(tǒng)寬場顯微鏡中,來自標本不同縱深的光線都可投射到同一焦平面(感光元件)上,所以其成像是整個樣品的重疊像,沒有縱向分辨能力。單光子激光共聚焦顯微鏡用針空有效濾除了雜散光,分辨率有了本質(zhì)上的提高,擁有了對樣品的特定焦平面精細成像的能力,可以進行三維成像、動態(tài)成像等。然而,針空在濾除雜散光的同時也將大部分來自焦平面的熒光濾除了,只有很弱的熒光到達檢測器。若要提高信號強度,需要加大激發(fā)光功率,這又會導致對活細胞的光毒性和熒光分子的光漂白增加。雙光子顯微鏡蕞大的優(yōu)勢來源于其雙光子光源的非線性光學效應,與單光子共聚焦顯微鏡蕞大的不同在于無須使用針空限制光學散射,其具體優(yōu)勢如下所述。
和很多偉大的科學發(fā)明一樣,雙光子顯微鏡的出現(xiàn)也有一點偶然,但正是那瞬間的靈感為生物科學尤其是神經(jīng)科學帶來了一種**性的成像技術:雙光子激發(fā)熒光顯微鏡。1990年初,當WinfriedDenk剛從康奈爾大學博士畢業(yè)準備前往瑞士讀博后時,他看了一本關于激光掃描顯微鏡的書,從中了解到非線性光學效應——強光和物質(zhì)的相互作用。當時,Denk有同事研究生物樣品中的鈣離子但苦于沒有強大的紫外激光器和光學元件,于是他就想到如果使用雙光子吸收就能夠繞開紫外,換言之,與其通過一個紫外光子激發(fā)標記的鈣離子,通過兩個雙倍波長的可見光光子也能激發(fā)相同的熒光。有了想法后馬上實驗。借了一套染料飛秒激光器,Denk聯(lián)合他的導師WattWebb及其博士生JamesStrickler只用六個小時就完成了實驗搭建,采集數(shù)據(jù)則用了兩到三天,于是一篇里程碑式的文章就此誕生了。雙光子顯微鏡知多少。
雙光子吸收理論早在1931年就由諾獎得主提出,30年后因為有了激光才得到實驗驗證,但是到WinfriedDenk發(fā)明雙光子顯微鏡又用了將近30年。要理解雙光子的技術挑戰(zhàn)和飛秒激光發(fā)揮的重要作用,首先要了解其中的非線性過程。雙光子吸收相當于和頻產(chǎn)生非線性過程,這要求極高的電場強度,而電場取決于聚焦光斑大小和激光脈寬。聚焦光斑越小,脈寬越窄,雙光子吸收效率越高。對于衍射極限顯微鏡,聚焦在樣品上的光斑大小只和物鏡NA和激光波長有關,所以關鍵變量只剩下激光脈寬?;谝陨戏治觯軌蛞愿咧仡l(100MHz)輸出超短脈沖(100fs量級)的飛秒激光器成了雙光子顯微鏡的標準激發(fā)光源。這也再次說明雙光子顯微鏡的優(yōu)勢:只有焦平面處才能形成雙光子吸收,而焦平面之外由于光強低無法被激發(fā),所以雙光子成像更清晰。WinfriedDenk初使用的光源是染料飛秒激光器(100fs脈寬、630nm可見光波長)。雖然染料激光器對于實驗室演示尚可,但是使用很不方便所以遠未實現(xiàn)商用。很快雙光子顯微鏡的標配光源就變成了飛秒鈦寶石激光器。除了固態(tài)光源優(yōu)勢,鈦寶石激光器還具有較寬的近紅外波長調(diào)諧范圍,而近紅外相比可見光穿透更深,對生物樣品損傷更小。對于顯微成像技術包含:寬場熒光顯微鏡、激光共聚焦顯微鏡、轉(zhuǎn)盤共聚焦顯微鏡、雙光子顯微鏡。國外ultima2PPLUS雙光子顯微鏡作用
雙光子顯微鏡可以在小鼠的的任何部位進行有生命體成像。國外雙光子顯微鏡ultima
雙光子顯微鏡是一種先進的成像技術,能夠?qū)崿F(xiàn)細胞或組織的深層觀察。它的主要特點是使用雙光子激發(fā)來產(chǎn)生熒光,從而實現(xiàn)對生物樣品的高分辨率成像。雙光子顯微鏡的工作原理是利用激光的脈沖寬度極窄的特性,將高能激光束聚焦到生物樣品中,激發(fā)出熒光。這個過程需要使用一個特殊的雙光子激發(fā)源,它能夠?qū)⒁粋€光子轉(zhuǎn)換為兩個光子,其中一個光子用于激發(fā)熒光,另一個光子則用于成像。雙光子顯微鏡具有以下優(yōu)點:高分辨率:由于雙光子激發(fā)的特性,可以實現(xiàn)對生物樣品的高分辨率成像,特別是對于深層組織的觀察。穿透深度大:雙光子激光的波長較長,能夠更好地穿透生物組織,從而實現(xiàn)對深層細胞的觀察。熒光壽命長:雙光子激發(fā)產(chǎn)生的熒光壽命比單光子激發(fā)產(chǎn)生的熒光壽命長,這使得雙光子顯微鏡能夠更好地區(qū)分不同的熒光標記物。減少光毒性:由于雙光子激發(fā)的能量較低,因此對生物樣品的損傷較小,可以減少光毒性。總之,雙光子顯微鏡是一種非常有用的成像技術,可以用于生物學、醫(yī)學、材料科學等領域的研究。國外雙光子顯微鏡ultima