隨著生物分子光學(xué)標(biāo)記技術(shù)的不斷進步,光學(xué)技術(shù)在揭示生命活動基本規(guī)律的研究中正發(fā)揮越來越重要的作用,也為醫(yī)學(xué)診療提供了更多、更有效的手段。生物醫(yī)學(xué)光學(xué)(BiomedicalOptics)是近年來受到國際光學(xué)界和生物醫(yī)學(xué)界關(guān)注的研究熱點,在生物活檢、光動力、細胞結(jié)構(gòu)與功能檢測、基因表達規(guī)律的在體研究等問題上取得了一系列研究成果,目前正在從宏觀到微觀上對大腦活動與功能進行多層面的研究。細胞重大生命活動(包括細胞增殖、分化、凋亡及信號轉(zhuǎn)導(dǎo))的發(fā)生和調(diào)節(jié)是通過生物大分子間(如蛋白質(zhì)-蛋白質(zhì)、蛋白質(zhì)-核酸等)相互作用來實現(xiàn)的。蛋白質(zhì)作為基因調(diào)控的產(chǎn)物,與細胞和機體生理過程代謝直接相關(guān),深入研究基因表達及蛋白質(zhì)-蛋白質(zhì)相互作用不僅能揭示生命活動的基本規(guī)律,同時也能深入了解疾病發(fā)生的分子機理,進而為尋找更有效的藥物分子、提高藥物篩選和藥物設(shè)計的效率提供新的方法和思路。雙光子熒光顯微鏡是結(jié)合了激光掃描共聚焦顯微鏡和雙光子激發(fā)技術(shù)的一種新技術(shù)。美國靈長類多光子顯微鏡實驗操作
某種物質(zhì)能產(chǎn)生熒光,首要條件是分子必須具有吸收的結(jié)構(gòu),即生色團(分子中具有吸收特征頻率的光能的基團)。其次,該物質(zhì)必須具有一定的量子產(chǎn)率和適宣的環(huán)境。我們把分子中發(fā)射熒光的基團稱為熒光團。熒光團一定是生色團,但生色團不一定是熒光團。因為,如果生色團的量子產(chǎn)率等于零,就不能發(fā)射出熒光,處于激發(fā)態(tài)的分子,可以由許多方式(如熱,碰撞)把能量釋放出來,發(fā)射熒光只是其中的一種方式。此外,一種物質(zhì)吸收光的能力及量子產(chǎn)率又與物質(zhì)所處的環(huán)境密切相關(guān)。美國bruker多光子顯微鏡價格多光子激光掃描顯微鏡是建立在激光掃描顯微鏡技術(shù)基礎(chǔ)上的實驗方法,三維觀察上提供更的光學(xué)切片能力。
對于雙光子(2P)成像而言,離焦和近表面熒光激發(fā)是兩個比較大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團的吸收截面比2P要小得多,所以需要更高數(shù)量級的脈沖能量才能獲得與2P激發(fā)的相同強度的熒光信號。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經(jīng)元活動;需要更高的脈沖能量,以便在每個像素停留時間內(nèi)收集足夠的信號。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠程的連接。要想將神經(jīng)元活動與行為聯(lián)系起來,需要同時監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動,大腦中的神經(jīng)網(wǎng)絡(luò)會在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元動力學(xué),就需要MPM具備對神經(jīng)元進行快速成像的能力??焖費PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。
多光子顯微鏡對成像深度的改善利用紅光或紅外光激發(fā),光散射小(小粒子的散射與波長的四次方的成反比)。不需要***,能更多收集來自成像截面的散射光子。***不能區(qū)分由離焦區(qū)域或焦點區(qū)發(fā)射出的散射光子,多光子在深層成像信噪比好。單光子激發(fā)所用的紫外或可見光在光束到達焦平面之前易被樣品吸收而衰減,不易對深層激發(fā)。多光子熒光成像的特點。深度成像∶與共聚焦相比能更好地對厚散射物質(zhì)成像。信噪比∶多光子吸收采用的波長是單光子吸收的2倍以上,所以顯微試樣中的瑞利散射更小,熒光測定的信噪比更高。觀察活細胞∶離子測量(i.e.Ca2+),GFP,發(fā)育生物學(xué)等—減少了光毒性和光漂白,能對細胞長時間觀察。全球多光子顯微鏡主要生產(chǎn)地區(qū)分析,包括產(chǎn)量、產(chǎn)值份額等。
多光子激發(fā)在紫外成像的優(yōu)勢在可見光脈沖中能得到紫外衍射的顯微觀察像。即使不使用紫外域光源、光學(xué)元件用可見光源、光學(xué)元件就能得到紫外光激勵的高空間分辨率圖像。多光子在生物成像中的優(yōu)勢在生物顯微鏡觀察方面,較早考慮的是不損壞生物本身的活性狀態(tài),維持水分、離子濃度、氧和養(yǎng)分的流通。在光觀察場合,無論是熱還是光子能量方面都必須停留在細胞不受損傷的照射量、光能量內(nèi)。多光子顯微鏡則能夠滿足此,而且還具有很多優(yōu)點。如三維分辨率、深度侵入、在散射效率、背景光、信噪比、控制等方面,均有以往激光顯微鏡不具備,或具有無法比擬的超越特性。多光子顯微鏡的大多數(shù)補償器都采用棱鏡。美國嚙齒類多光子顯微鏡應(yīng)用
多光子顯微鏡在基礎(chǔ)科學(xué)和臨床診斷領(lǐng)域的應(yīng)用范圍正在持續(xù)增長。美國靈長類多光子顯微鏡實驗操作
使用MPM對神經(jīng)元進行成像時,通過隨機訪問掃描—即激光束在整個視場上的任意選定點上進行快速掃描—可以只掃描感興趣的神經(jīng)元,這樣不僅避免掃描到任何未標(biāo)記的神經(jīng)纖維,還可以優(yōu)化激光束的掃描時間。隨機訪問掃描可以通過聲光偏轉(zhuǎn)器(AOD)來實現(xiàn),其原理是將具有一個射頻信號的壓電傳感器粘在合適的晶體上,所產(chǎn)生的聲波引起周期性的折射率光柵,激光束通過光柵時發(fā)生衍射。通過射頻電信號調(diào)控聲波的強度和頻率從而可以改變衍射光的強度和方向,這樣使用1個AOD就可以實現(xiàn)一維橫向的任意點掃描,利用1對AOD,結(jié)合其他軸向掃描技術(shù)可實現(xiàn)3D的隨機訪問掃描。但是該技術(shù)對樣本的運動很敏感,易出現(xiàn)運動偽影。目前,快速光柵掃描即在FOV中進行逐行掃描,由于利用算法可以輕松解決運動偽影而被普遍的使用。美國靈長類多光子顯微鏡實驗操作