針對刀具磨損狀態(tài)在實際生產加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術獲取機床內部數據,對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內部實時數據并將其與實際加工情景緊密結合,能直接反映當前的加工狀態(tài)。將卷積神經網絡用于構建刀具磨損狀態(tài)識別模型,直接將采集到的數據作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現有數據是在相同的加工條件下測得的,而實際加工過程中,加工參數以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數試驗,考慮加工參數對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現自學習,不斷提升模型的精度和預測效果。柴油機狀態(tài)監(jiān)測與故障診斷系統(tǒng)是一個集數據采集與分析、狀態(tài)監(jiān)測、故障診斷為一體的多任務處理系統(tǒng)。常州NVH監(jiān)測技術
基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現為一些特征參量的變化,根據診斷需要,選擇有代表性的特征參量為該設備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數據處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。溫州性能監(jiān)測數據設備的故障監(jiān)測診斷技術是利用科學的檢測方法和現代化技術手段,對設備目前的運行狀態(tài)進行監(jiān)測和排查。
現代化生產企業(yè)為了極大限度地提高生產水平和經濟效益,不斷地向規(guī)模化和高技術技術含量發(fā)展,因此生產裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續(xù)運行的生產設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發(fā)生故障后會引起公害的設備。傳統(tǒng)的事后維修和定期維修帶來的過剩維修或失修,使維修費用在生產成本中所占比重很大。狀態(tài)監(jiān)測維修是在設備運行時,對它的各個主要部位產生的物理、化學信號進行狀態(tài)監(jiān)測,掌握設備的技術狀態(tài),對將要形成或已經形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產生前制訂預知性維修計劃,確定設備維修的內容和時間。因此狀態(tài)監(jiān)測維修既能經常保持設備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,減少故障停機損失。
目前設備狀態(tài)監(jiān)測及故障預警若干關鍵技術可歸納如下:(1)揭示設備運行狀態(tài)機械動態(tài)特性劣化演變規(guī)律。設備由非故障運行狀態(tài)劣化為故障運行狀態(tài),其機械動態(tài)特性通常有一個發(fā)展演變過程(2)提取設備運行狀態(tài)發(fā)展趨勢特征。在役設備往往具有復雜運行狀態(tài),在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。動力裝備全壽命周期監(jiān)測診斷方面:實現了支持物聯(lián)網的智能信息采集與管理、全生命周期動態(tài)自適應監(jiān)測、早期非線性故障特征提取。優(yōu)化重構出綜合體現裝備運行工況及表現的新參數,提高異常狀態(tài)辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識能力?;谖锫?lián)網和網絡化監(jiān)測診斷將產品監(jiān)測診斷與運行服務支持有機集成一體,在應用中實現動力裝備常見故障診斷準確率達80%以上??蓱糜陲L力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯(lián)網的動力裝備全生命周期監(jiān)測與服務支持創(chuàng)新模式,提供了其生命周期的遠程監(jiān)測診斷與維護等專業(yè)化服務。新型電機故障監(jiān)測系統(tǒng)借用物聯(lián)網、人工智能、邊緣計算等技術,提前預判設備故障。
任何設備在故障發(fā)生之前都會出現一些異常現象或癥狀,如振動偏大,有異常噪音等。持續(xù)狀態(tài)監(jiān)測在預測性維護實踐中起著重要作用,而關鍵的監(jiān)測參數是振動。設備振動揭示了對組件問題的重要見解,這些問題可能會降低流程質量并導致生產停工。通過油溫升高可能是由于軸承運行狀態(tài)異常,也可能是室溫高、散熱慢、潤滑油枯度偏高或運行時間較長等原因。因此,在判斷時可能出現兩類決策錯誤;一是把實際處于異常狀態(tài)的機器誤認為正常狀態(tài),二是把實際處于正常狀態(tài)的機器錯認為異常狀態(tài)。如果同時用幾個特征,如油溫.潤滑油分析和噪聲來監(jiān)視機器主軸承的運行狀態(tài),判斷就較為可靠。由此可見,正確的識別理論是十分重要的。遠程終端廣泛應用于工業(yè)互聯(lián)網、分布式數據采集、設備狀態(tài)的在線監(jiān)測,能夠進行前端數據清洗和邊緣計算,通過對歷史數據趨勢分析、設備數據機理分析、統(tǒng)計分析等大數據分析,對設備的狀態(tài)有效可靠的健康狀態(tài)評判,從而切實有效的提高設備的維護能力。遠程終端可實現對設備狀態(tài)的自檢,分析計量故障等信息,及時發(fā)現計量異?!,F場監(jiān)測箱開門、斷電、設備運行等異常信息也能夠主動發(fā)送報警信息到監(jiān)測中心,實現設備在線監(jiān)診的準確性、完整性、及時性和可靠性。刀具磨損間接監(jiān)測是通過分析噪聲、削力、振動、聲發(fā)射、電機電流與功率等,間接獲得刀具的磨損情況。常州旋轉機械監(jiān)測控制策略
監(jiān)測系統(tǒng)可以實現在任何運行條件下,高精細地監(jiān)測多種類型的重要機組。常州NVH監(jiān)測技術
作為工業(yè)領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數據預處理、工業(yè)機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現,前期需要大量歷史數據的支撐,數據采集、歸納、分析是一個漫長的過程。的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!常州NVH監(jiān)測技術
上海盈蓓德智能科技有限公司公司是一家專門從事智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)產品的生產和銷售,是一家其他型企業(yè),公司成立于2019-01-02,位于上海市閔行區(qū)新龍路1333號28幢328室。多年來為國內各行業(yè)用戶提供各種產品支持。盈蓓德,西門子目前推出了智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等多款產品,已經和行業(yè)內多家企業(yè)建立合作伙伴關系,目前產品已經應用于多個領域。我們堅持技術創(chuàng)新,把握市場關鍵需求,以重心技術能力,助力電工電氣發(fā)展。我們以客戶的需求為基礎,在產品設計和研發(fā)上面苦下功夫,一份份的不懈努力和付出,打造了盈蓓德,西門子產品。我們從用戶角度,對每一款產品進行多方面分析,對每一款產品都精心設計、精心制作和嚴格檢驗。智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)產品滿足客戶多方面的使用要求,讓客戶買的放心,用的稱心,產品定位以經濟實用為重心,公司真誠期待與您合作,相信有了您的支持我們會以昂揚的姿態(tài)不斷前進、進步。