隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產以及家用電器中得到了應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術實現要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監(jiān)測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題。電機狀態(tài)監(jiān)測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,實現“預知”維修。南通產品質量監(jiān)測特點
隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產以及家用電器中得到了的應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術實現要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監(jiān)測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題。南通汽車監(jiān)測應用設備的故障監(jiān)測診斷技術是利用科學的檢測方法和現代化技術手段,對設備目前的運行狀態(tài)進行監(jiān)測和排查。
現代化生產企業(yè)為了極大限度地提高生產水平和經濟效益,不斷地向規(guī)?;透呒夹g技術含量發(fā)展,因此生產裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續(xù)運行的生產設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發(fā)生故障后會引起公害的設備。傳統(tǒng)的事后和定期維修帶來的過剩維修或失修,使維修費用在生產成本中所占比重很大。狀態(tài)監(jiān)測維修是在設備運行時,對它的各個主要部位產生的物理、化學信號進行狀態(tài)監(jiān)測,掌握設備的技術狀態(tài),對將要形成或已經形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產生前制訂預知性維修計劃,確定設備維修的內容和時間。因此狀態(tài)監(jiān)測維修既能經常保持設備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機損失。
傳統(tǒng)方法通常無法自適應提取特征, 同時需要一定的離線數據訓練得到檢測模型, 但目標對象在線場景下采集到的數據有限, 且其數據分布與訓練數據的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數據, 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數據微小波動而產生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想的診斷和檢測結果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經網絡已被成功應用于早期故障特征的自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數據進行模型訓練, 而歷史采集的輔助數據與目標對象數據可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監(jiān)測中的應用仍存在較大的提升空間.β-Star監(jiān)測系統(tǒng)是盈蓓德智能科技的產品,為大型電機提供數據監(jiān)測和故障預判服務。
設備狀態(tài)監(jiān)測和故障診斷技術是設備維護手段之一。設備的故障監(jiān)測診斷技術,就是利用科學的檢測方法和現代化技術手段,對設備目前的運行狀態(tài)進行監(jiān)測和排查,從而判斷出設備運行狀態(tài)的可靠性,確認其局部或整機是否正常運行。煤礦用機電設備溫度振動監(jiān)測系統(tǒng)用于煤礦主扇、壓風機、鋼絲繩牽引帶式輸送機、滾筒帶式輸送機、排水泵和電動機、提升機等,有助于掌握設備運行工況中的溫度振動數據。提升機、鋼絲繩牽引、滾筒帶式輸送機、皮帶機、空壓機、壓風機、水泵等煤礦機電設備要求增加電動機及主要軸承溫度和振動監(jiān)測。裝置功能:1、提升機、水泵、皮帶機等設備電動機主軸承溫度振動在線監(jiān)測2、礦用高壓異步電動機軸承溫度振動檢測診斷3、提升機、水泵、皮帶機等設備滾筒主軸承溫度振動在線監(jiān)測4、井下大型機電設備電動機及主要軸承溫度振動在線監(jiān)測5、可以同時收集電機前后軸承溫度及電機振動量的數值,對收到的信息分析處理6、系統(tǒng)提供網絡接口,可直接與智能礦山網絡相連,也可與其它網絡內的系統(tǒng)連接;7、在線系統(tǒng)軟件可實時監(jiān)測任意通道的頻譜,時域波形、趨勢、三維譜圖和坐標圖,還可通過互聯網進行遠程監(jiān)測。大型電機監(jiān)測和故障預判系統(tǒng)助力實現工業(yè)設備智能化管理和預測性維護。南通產品質量監(jiān)測特點
盈蓓德科技提供一種滿足大型電機設備監(jiān)測要求,實現振動數據采集及分析,造價較低的振動監(jiān)測系統(tǒng)。南通產品質量監(jiān)測特點
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關數據挖掘、粗糙集等方法。故障預測模型構建。構建基于智能信息系統(tǒng)的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數據信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態(tài)劣化的相關評價參數、模式及準則。如表征設備狀態(tài)發(fā)展的參數及特征模式,狀態(tài)發(fā)展評價準則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據及判據等。物聯網聲學監(jiān)控系統(tǒng)以音頻數據,輔以其他設備參數,通過物聯網技術實現設備狀態(tài)的遠程感知,基于AI神經網絡技術,計算并提取設備音頻特征,從而實現設備運行狀態(tài)的實時評估與故障的早期識別。幫助企業(yè)用戶提升生產效率,保證生產安全,優(yōu)化生產決策。南通產品質量監(jiān)測特點