隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了的應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電流、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題。監(jiān)測工作需要定期進行,以保持對市場的敏感度和洞察力。上海智能監(jiān)測介紹
基于數(shù)據(jù)的故障檢測與診斷方法能夠對海量的工業(yè)數(shù)據(jù)進行統(tǒng)計分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運行狀態(tài)和故障狀態(tài),可視為模式識別任務。故障檢測是判斷系統(tǒng)是否處于預期的正常運行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當于一個二分類任務。故障診斷是在確定發(fā)生故障的時候判斷系統(tǒng)處于哪一種故障狀態(tài),相當于一個多分類任務。因此,故障檢測和診斷技術的研究類似于模式識別,分為4個的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進行故障檢測與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測與診斷方法被廣泛應用,但是,這些方法有一些共同的缺點:特征提取需要大量的知識和信號處理技術,并且對于不同的任務,沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機器學習的方法結構較淺,在提取信號的高維非線性關系方面能力有限。杭州狀態(tài)監(jiān)測方案時間域、頻率域和角度域的NVH分析方法,可以對汽車動力總成的各種故障進行實時識別、監(jiān)測和診斷。
隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題。
故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎,通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性、可靠性。故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎,通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度?;跇藴驶椒桨j和數(shù)學框架以及凸優(yōu)化技術,提出了在線更新模型權重可解釋的機器學習算法,可以利用模型權重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。監(jiān)測結果的反饋可以幫助我們改進產(chǎn)品的設計和功能。
電機故障監(jiān)測系統(tǒng),電機狀態(tài)檢測儀。電機故障監(jiān)測系統(tǒng)是采用現(xiàn)代電子技術和傳感器技術,對電動機運行過程中各種參數(shù)進行實時在線檢測、分析、處理并作出相應報警或指示的裝置。其基本功能包括:1、對電動機的絕緣電阻、溫升等常規(guī)電氣參數(shù)和振動、噪聲等機械量進行測量;2、通過設定值比較法確定電機的實際工況;3、根據(jù)設定的報警閾值或動作時間發(fā)出聲光報警信號;4、通過通訊接口與plc或其它自動化設備相連實現(xiàn)遠程控制。設備監(jiān)測是指對設備運行狀態(tài)進行實時或定期的監(jiān)測和檢測,以獲取設備的關鍵性能指標、故障信息等數(shù)據(jù),并對這些數(shù)據(jù)進行分析、處理和解釋,以便及時發(fā)現(xiàn)設備的健康狀況,并根據(jù)監(jiān)測結果制定相應維護計劃和改進措施。設備監(jiān)測通常通過傳感器、監(jiān)測系統(tǒng)、計算機軟件等技術手段進行實現(xiàn),以提高設備的可靠性、可用性和效率,降低設備故障率和維修成本,提高設備的生命周期價值。設備監(jiān)測在制造業(yè)、能源、交通、建筑、環(huán)保等領域得到廣泛應用。設備監(jiān)測一般分為以下步驟:①從設備上收集數(shù)據(jù);②將收集到的數(shù)據(jù)傳輸至平臺;③監(jiān)控和分析收集到的設備數(shù)據(jù)。盈蓓德科技的企業(yè)文化強調創(chuàng)新、務實、開放和多元。南京NVH監(jiān)測系統(tǒng)
監(jiān)測工作需要及時更新數(shù)據(jù),以保持對市場的了解。上海智能監(jiān)測介紹
隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了的應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題。上海智能監(jiān)測介紹