作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對(duì)于終端用來說,關(guān)于電機(jī)維護(hù)的主要是電氣班組的設(shè)備工程師、電機(jī)維護(hù)工程師、電機(jī)檢修人員等;對(duì)于電機(jī)廠家以及電機(jī)經(jīng)銷商來說,主要是電機(jī)售后服務(wù)工程師、電機(jī)銷售人員,會(huì)涉及到電機(jī)的運(yùn)行維護(hù);險(xiǎn)此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號(hào)稱可以實(shí)現(xiàn)電機(jī)預(yù)測(cè)性維護(hù),但問題非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測(cè)需要振動(dòng)、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場(chǎng)景設(shè)備類型多,運(yùn)行工況復(fù)雜,預(yù)測(cè)性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機(jī)理、機(jī)器學(xué)習(xí),技術(shù)要求很高。3)時(shí)間成本高。預(yù)測(cè)性維護(hù)要實(shí)現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個(gè)漫長(zhǎng)的過程。的電機(jī)智能運(yùn)維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測(cè)性維護(hù)的預(yù)測(cè)效果,還是電機(jī)的智能運(yùn)維的市場(chǎng)推廣以及市場(chǎng)接受程度,對(duì)于電機(jī)運(yùn)維來說,都還有很遠(yuǎn)的一段距離!電機(jī)監(jiān)測(cè)系統(tǒng)產(chǎn)生大量的數(shù)據(jù),包括振動(dòng)數(shù)據(jù)、電流數(shù)據(jù)等。有效地處理和分析這些大量數(shù)據(jù)是一項(xiàng)挑戰(zhàn)。寧波降噪監(jiān)測(cè)應(yīng)用
柴油機(jī)狀態(tài)監(jiān)測(cè)與故障診斷系統(tǒng)是一個(gè)集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測(cè)、故障診斷為一體的多任務(wù)處理系統(tǒng), 可實(shí)現(xiàn)柴油機(jī)監(jiān)測(cè)、保護(hù)、分析、診斷等功能。主要包括數(shù)據(jù)采集與工況監(jiān)測(cè)、活塞缸套磨損監(jiān)測(cè)分析、主軸承磨損狀態(tài)監(jiān)測(cè)分析、氣閥間隙異常監(jiān)測(cè)分析和瞬時(shí)轉(zhuǎn)速監(jiān)測(cè)分析等各種功能。信號(hào)分析、特征提取及診斷原理是每個(gè)監(jiān)測(cè)診斷子功能的**部分, 各子功能都有相應(yīng)的信號(hào)分析與特征提取方法, 包括信號(hào)預(yù)處理、時(shí)域、頻域分析、小波分析等, 自動(dòng)形成反映柴油機(jī)運(yùn)行狀態(tài)的特征量, 為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗(yàn)特征參量的有效性、建立故障標(biāo)準(zhǔn)征兆群, 并運(yùn)用模糊貼近度來實(shí)施故障類型的診斷識(shí)別。杭州EOL監(jiān)測(cè)監(jiān)測(cè)電機(jī)各個(gè)相位之間的電流和電壓關(guān)系,以檢測(cè)是否存在相位不平衡或其他電氣問題。
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。
振動(dòng)的監(jiān)測(cè)是機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷的重要手段之一。通過對(duì)機(jī)械設(shè)備在運(yùn)行過程中產(chǎn)生的振動(dòng)信號(hào)進(jìn)行測(cè)量、分析和處理,可以獲取設(shè)備的狀態(tài)信息,進(jìn)而判斷設(shè)備的健康狀況,預(yù)測(cè)故障發(fā)展趨勢(shì),及時(shí)發(fā)現(xiàn)并處理潛在問題。振動(dòng)的監(jiān)測(cè)方法通??梢苑譃槎ㄆ邳c(diǎn)檢、隨機(jī)點(diǎn)檢和長(zhǎng)期監(jiān)測(cè)等幾種方式。定期點(diǎn)檢是按照預(yù)定的時(shí)間間隔對(duì)設(shè)備進(jìn)行振動(dòng)測(cè)量,適用于對(duì)設(shè)備狀態(tài)進(jìn)行定期檢查和評(píng)估。隨機(jī)點(diǎn)檢則是在設(shè)備運(yùn)行過程中,根據(jù)需要對(duì)設(shè)備進(jìn)行振動(dòng)測(cè)量,適用于對(duì)設(shè)備狀態(tài)進(jìn)行實(shí)時(shí)跟蹤和監(jiān)測(cè)。長(zhǎng)期監(jiān)測(cè)則是對(duì)設(shè)備進(jìn)行連續(xù)不斷的振動(dòng)監(jiān)測(cè),適用于對(duì)設(shè)備狀態(tài)進(jìn)行長(zhǎng)期跟蹤和分析。在振動(dòng)監(jiān)測(cè)中,常用的傳感器包括加速度計(jì)、速度計(jì)和位移計(jì)等。這些傳感器可以測(cè)量設(shè)備在不同方向上的振動(dòng)信號(hào),并將振動(dòng)信號(hào)轉(zhuǎn)換為電信號(hào)進(jìn)行傳輸和處理。通過對(duì)振動(dòng)信號(hào)的分析,可以獲取設(shè)備的振動(dòng)特征參數(shù),如振動(dòng)幅值、頻率、相位等,進(jìn)而判斷設(shè)備的運(yùn)行狀態(tài)和故障類型??傊?,振動(dòng)的監(jiān)測(cè)是機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷的重要手段之一。通過對(duì)振動(dòng)信號(hào)的測(cè)量、分析和處理,可以及時(shí)發(fā)現(xiàn)并處理潛在問題,提高設(shè)備的可靠性和生產(chǎn)效率。同時(shí),振動(dòng)監(jiān)測(cè)技術(shù)還可以為設(shè)備的預(yù)測(cè)性維護(hù)和優(yōu)化運(yùn)行提供有力支持。檢測(cè)設(shè)備的不平衡、磨損和軸承故障等問題,通過分析振動(dòng)數(shù)據(jù),如幅值、頻譜和相位等,判斷設(shè)備健康狀況。
傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算、機(jī)器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測(cè)性維護(hù)技術(shù)應(yīng)運(yùn)而生。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測(cè)階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測(cè)性維護(hù)。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟在線持續(xù)監(jiān)測(cè)階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測(cè)性維護(hù)。實(shí)現(xiàn)工業(yè)互聯(lián)網(wǎng)。通過在線監(jiān)測(cè)系統(tǒng)來實(shí)現(xiàn),實(shí)時(shí)地收集和分析電機(jī)運(yùn)行數(shù)據(jù)。通過電機(jī)狀態(tài)監(jiān)測(cè),可以提高電機(jī)的可靠性。智能監(jiān)測(cè)設(shè)備
溫度監(jiān)測(cè)是電機(jī)監(jiān)測(cè)中常用的一種方法,通過埋置在電機(jī)內(nèi)部的溫度傳感器,實(shí)時(shí)監(jiān)測(cè)電機(jī)的運(yùn)行溫度。寧波降噪監(jiān)測(cè)應(yīng)用
電力系統(tǒng)中發(fā)電機(jī)的單機(jī)容量越大型發(fā)電機(jī)在電力生產(chǎn)中處于主力位置,同時(shí)大型發(fā)電機(jī)造價(jià)昂貴,結(jié)構(gòu)復(fù)雜,一旦遭受損壞,需要的檢修期長(zhǎng),因此要求有極高的運(yùn)行可靠性。就我國(guó)今后很長(zhǎng)一段時(shí)間內(nèi)的缺電、用電緊張的狀況而言,發(fā)電機(jī)的年運(yùn)行小時(shí)數(shù)目和滿負(fù)荷率都較以往高出很多,備用容量很少的情況下,其運(yùn)行可靠性顯得尤為重要和突出。因此對(duì)大型機(jī)組進(jìn)行在線監(jiān)測(cè)與診斷,做到早期預(yù)警以防止事故的發(fā)生或擴(kuò)大具有重要的現(xiàn)實(shí)意義。通常對(duì)發(fā)電機(jī)的“監(jiān)測(cè)”與“診斷”在內(nèi)容上并無明確的劃分界限,可以說監(jiān)測(cè)數(shù)據(jù)和結(jié)果即為診斷的依據(jù)。監(jiān)測(cè)利用各種傳感器在電機(jī)運(yùn)行時(shí)對(duì)電機(jī)的狀態(tài)提取相關(guān)數(shù)據(jù)。故障診斷使用計(jì)算機(jī)及其相應(yīng)智能軟件,根據(jù)傳感器提供的信息,對(duì)故障進(jìn)行分類、定位,確定故障的嚴(yán)重程度并提出處理意見。因此狀態(tài)監(jiān)測(cè)和故障診斷是一項(xiàng)工作的兩個(gè)部分,前者是后者的基礎(chǔ),后者是前者的分析與綜合。電機(jī)狀態(tài)監(jiān)測(cè)技術(shù)可幫助運(yùn)行維護(hù)人員擺脫被動(dòng)檢修和不太理想的定期檢修的困境,按照設(shè)備內(nèi)部實(shí)際的運(yùn)行狀況,合理安排檢修工作,實(shí)現(xiàn)所謂“預(yù)知”維修。這樣既可避免由于設(shè)備突然損壞,停止運(yùn)行帶來的損失,又可充分發(fā)揮設(shè)備的作用。寧波降噪監(jiān)測(cè)應(yīng)用