電渦流式傳感器,將位移、厚度、材料損傷等非電量轉(zhuǎn)換為電阻抗的變化(或電感、Q值的變化),從而進行非電量的測量。一、工作原理電渦流式傳感器由傳感器激勵線圈和被測金屬體組成。根據(jù)法拉第電磁感應定律,當傳感器激勵線圈中通過以正弦交變電流時,線圈周圍將產(chǎn)生正選交變磁場,是位于蓋磁場中的金屬導體產(chǎn)生感應電流,該感應電流又產(chǎn)生新的交變磁場。新的交變磁場阻礙原磁場的變化,使得傳感器線圈的等效阻抗發(fā)生變化。傳感器線圈受電渦流影響時的等效阻抗Z為式中,ρ為被測體的電阻率;μ為被測體的磁導率;r為線圈與被測體的尺寸因子;f為線圈中激磁電流的頻率;x為線圈與導體間的距離。由此可見,線圈阻抗的變化完全取決于被測金屬的電渦流效應,分別與以上因素有關(guān)。如果只改變式中的一個參數(shù),保持其他參數(shù)不變,傳感器線圈的阻抗Z就只與該參數(shù)有關(guān),如果測出傳感器線圈阻抗的變化,就可以確定該參數(shù)。在實際應用中,通常是改變線圈與導體間的距離x,而保持其他參數(shù)不變,來實現(xiàn)位移和距離測量。二、等效電路討論電渦流式傳感器時。制作傳感器線圈的材料是什么;空調(diào)傳感器線圈 氣動
部分314、部分316、部分318和部分320允許余弦定向線圈112覆蓋在pcb上。然而,通孔306和pcb322的相對的兩側(cè)上的跡線302和跡線304的存在降低了由線圈104檢測到的信號的有效幅度。有效地,通孔306在發(fā)射線圈106和信號線圈104之間形成間隙距離,這本身對位置定位系統(tǒng)的準確性有很大的影響。這還與以下相結(jié)合:由于在pcb322的頂側(cè)和底側(cè)上都形成了信號線圈104的跡線,而導致的金屬目標124和pcb322上的信號線圈104之間的有效氣隙的增加。圖3b示出另一個關(guān)于對稱性的問題,其中,發(fā)射線圈106與接收線圈104是不對稱的。在圖3b所示的情況下,接收線圈104不以發(fā)射線圈106為中心,并且形成與接收線圈104和發(fā)射線圈106的連接的跡線也不對稱。圖3c示出由發(fā)射線圈106生成的磁場強度的不均勻性。如圖3c所示,發(fā)射線圈106的兩條跡線位于圖上的位置0和位置5處,而接收線圈104被定位在位置0和位置5之間。圖3c示出這些跡線之間的磁場在兩條跡線之間具有小值。圖3c沒有示出由于連接圖3c中所示的兩條跡線并且垂直于圖3c中所示的跡線的兩條跡線而引起的另外的變形(distortion)。圖3d和圖3e還示出可能由發(fā)射線圈106中的位移引起的不準確性。如圖3d和圖3e所示,發(fā)射線圈106包括位移330??照{(diào)傳感器線圈 氣動傳感器線圈的注意事項是什么?
正弦定向接收器線圈906包括阱908和阱912,并且被連接到引線924。類似地,余弦定向接收器線圈904包括阱910和阱914,并且被耦合到引線926。pcb還可以具有安裝孔918。圖9a示出線圈設計900的平面圖,而圖9b示出線圈設計900的斜視圖,其示出在其上形成線圈設計900的pcb板的兩側(cè)上的通孔和跡線。圖9c示出印刷電路板930上的線圈設計900的平面圖。此外,被耦合到引線920、引線924和引線926的控制電路932被安裝在電路板930上。圖9d示出類似于在定位系統(tǒng)400中使用的實際位置的實際位置與在例如算法700的步驟704中通過使用rx電壓通過仿真重構(gòu)的位置之間的百分比誤差。如圖9d所示,在已經(jīng)根據(jù)算法700優(yōu)化線圈設計900之后,理論結(jié)果與仿真結(jié)果之間的百分比誤差小于%。圖9e示出在已經(jīng)根據(jù)算法700優(yōu)化線圈設計900之后的實際角位置和仿真角位置。圖6也示出在已經(jīng)應用線性化算法之后經(jīng)優(yōu)化的線圈設計900的全標度誤差的百分比。在該標度下,誤差小于%fs。本發(fā)明的實施例包括:仿真步驟704,其仿真位置定位系統(tǒng)線圈設計的響應;以及,線圈設計調(diào)整算法712,其使用所仿真的響應來調(diào)整線圈設計以獲得更好的準確性。如上所述,位置傳感器遭受許多非理想性。首先,tx線圈所產(chǎn)生的磁場高度不均勻。
這些步進電機提供目標的4軸運動,即x、v、z以及繞z軸的旋轉(zhuǎn)。這樣,如圖4b所示的系統(tǒng)400能夠沿包括z方向在內(nèi)的所有可能方向掃描位置定位器系統(tǒng)410中的接收二器線圈上方的金屬目標408,以產(chǎn)生不同的氣隙。如前所述,氣隙是金屬目標408與放置位置定位系統(tǒng)410的發(fā)射線圈和接收線圈的pcb之間的距離。這樣的系統(tǒng)可以用于位置定位器系統(tǒng)410的校準、線性化和分析。圖4c示出在具有發(fā)射線圈106和接收線圈104的旋轉(zhuǎn)位置定位器系統(tǒng)410上方的金屬目標408的掃描。如圖4c所示,金屬目標408在接收器線圈104上方從0°掃描到θ°。圖4d示出當如圖4c所示地掃描金屬目標408時從接收器線圈104測量的電壓vsin和電壓vcos與仿真的結(jié)果的比較的示例。在圖4d的特定示例中,金屬目標408在50個位置被掃描。十字表示樣本電壓,實線表示由電磁場求解程序cdice-bim所仿真的值。位置定位器系統(tǒng)410的準確度可以被定義為在金屬目標408從初始位置掃描到結(jié)束位置期間的位置的測量與該掃描的預期理想曲線之間的差。該結(jié)果以相對于全標度的百分比表示,如圖5所示。在圖5中,pos0是來自位置定位系統(tǒng)410的測量值,并且輸出擬合是理想曲線。pos0是從控制器402的寄存器測量的值,而fs是全標度的值。例如。傳感器線圈哪家專業(yè),無錫東英電子有限公司值得信賴,期待您的來電!
圖2b示出金屬目標124相對于正弦定向線圈112和余弦定向線圈110處于90°位置。如圖2b所示,在正弦定向線圈112中,金屬目標124完全覆蓋環(huán)路116,并且使環(huán)路114和環(huán)路118未被覆蓋。結(jié)果,vc=1/2、vd=0、以及ve=1/2,因此vsin=vc+vd+ve=1。類似地,在余弦定向線圈110中,環(huán)路120的一半被覆蓋,導致va=-1/2,并且環(huán)路122的一半被覆蓋,導致vb=1/2。因此,由va+vb給出的vcos為0。類似地,圖2c示出金屬目標124相對于正弦定向線圈112和余弦定向線圈110處于180°位置。因此,正弦定向線圈112中的環(huán)路116和環(huán)路118的一半被金屬目標124覆蓋,而余弦定向環(huán)路110中的環(huán)路122被金屬目標124覆蓋。因此va=-1、vb=0、vc=1/2、vd=-1/2、以及ve=0。結(jié)果,vsin=0且vcos=-1。圖2d示出vcos和vsin相對于具有圖2a、圖2b和圖2c中提供的線圈拓撲的金屬目標124的角位置的曲線圖。如圖2d所示,可以通過處理vcos和vsin的值來確定角位置。如圖所示,通過從定義的初始位置到定義的結(jié)束位置對目標進行掃描,將在的輸出中生成圖2d中所示的正弦(vsin)和余弦(vcos)電壓。金屬目標124相對于接收線圈104的角位置可以根據(jù)來自正弦定向線圈112的vsin和余弦定向線圈110的vcos的值來確定,如圖2e所示。無錫東英電子有限公司傳感器線圈;外殼傳感器線圈廠家供貨
傳感器線圈的線圈在長時間使用后可能會發(fā)生老化??照{(diào)傳感器線圈 氣動
二)磁場的強度在近房間中心的磁場強度與回路中電流的大小和回路數(shù)直接成正比,與回路的直徑成反比例。國際標準(IEC60118—4,BS7594)指出:一個磁場的長期平均輸出功率值應為100mA/m(指每米毫安培)。不得低于70mA/m或高于140mA/m。該值是在回路內(nèi),距離地板1.2米時測得的磁場垂直面上的強度。允許在言語中出現(xiàn)達到400mA/m的強度峰值、頻率范圍應當覆蓋100Hz—5kHz。在回路中心的直徑a米,有n周圍繞的回路其磁場強度可以用下式計算:H是磁場的強度,用每米毫安培表示,I是電流值的均方根,用安培表示、對一個正方形的回路,大小用a米表示,其磁場強度要比計算的值少10%。如果磁場的長期平均輸出功率強度要達到100mA/m,則回路輸出的值至少要在400mA/m(好560mA/m),這樣可以避免在更大強度的言語聲音中產(chǎn)生過多的削峰。根據(jù)電磁原理我們可以看到,感應回路線圈并不是在建筑中產(chǎn)生磁場的的一條電線,所有建筑中的電線都會產(chǎn)生磁場,因此,助聽器不僅能收到語音信號,也可以接收到其他磁場信號,如50Hz的電源電壓信號等。在布線的時候要充分考慮到干擾源的問題。如果音頻磁場太弱,信噪比就不夠大。提高信號發(fā)射功率,可以干擾。在一些體積較小的助聽器中(其線圈亦小)??照{(diào)傳感器線圈 氣動